1,292 research outputs found

    NOViSE: a virtual natural orifice transluminal endoscopic surgery simulator

    Get PDF
    Purpose: Natural Orifice Transluminal Endoscopic Surgery (NOTES) is a novel technique in minimally invasive surgery whereby a flexible endoscope is inserted via a natural orifice to gain access to the abdominal cavity, leaving no external scars. This innovative use of flexible endoscopy creates many new challenges and is associated with a steep learning curve for clinicians. Methods: We developed NOViSE - the first force-feedback enabled virtual reality simulator for NOTES training supporting a flexible endoscope. The haptic device is custom built and the behaviour of the virtual flexible endoscope is based on an established theoretical framework – the Cosserat Theory of Elastic Rods. Results: We present the application of NOViSE to the simulation of a hybrid trans-gastric cholecystectomy procedure. Preliminary results of face, content and construct validation have previously shown that NOViSE delivers the required level of realism for training of endoscopic manipulation skills specific to NOTES Conclusions: VR simulation of NOTES procedures can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. In the context of an experimental technique, NOViSE could potentially facilitate NOTES development and contribute to its wider use by keeping practitioners up to date with this novel surgical technique. NOViSE is a first prototype and the initial results indicate that it provides promising foundations for further development

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    A Novel Haptic Simulator for Evaluating and Training Salient Force-Based Skills for Laparoscopic Surgery

    Get PDF
    Laparoscopic surgery has evolved from an \u27alternative\u27 surgical technique to currently being considered as a mainstream surgical technique. However, learning this complex technique holds unique challenges to novice surgeons due to their \u27distance\u27 from the surgical site. One of the main challenges in acquiring laparoscopic skills is the acquisition of force-based or haptic skills. The neglect of popular training methods (e.g., the Fundamentals of Laparoscopic Surgery, i.e. FLS, curriculum) in addressing this aspect of skills training has led many medical skills professionals to research new, efficient methods for haptic skills training. The overarching goal of this research was to demonstrate that a set of simple, simulator-based haptic exercises can be developed and used to train users for skilled application of forces with surgical tools. A set of salient or core haptic skills that underlie proficient laparoscopic surgery were identified, based on published time-motion studies. Low-cost, computer-based haptic training simulators were prototyped to simulate each of the identified salient haptic skills. All simulators were tested for construct validity by comparing surgeons\u27 performance on the simulators with the performance of novices with no previous laparoscopic experience. An integrated, \u27core haptic skills\u27 simulator capable of rendering the three validated haptic skills was built. To examine the efficacy of this novel salient haptic skills training simulator, novice participants were tested for training improvements in a detailed study. Results from the study demonstrated that simulator training enabled users to significantly improve force application for all three haptic tasks. Research outcomes from this project could greatly influence surgical skills simulator design, resulting in more efficient training

    Image-Based Flexible Endoscope Steering

    Get PDF
    Manually steering the tip of a flexible endoscope to navigate through an endoluminal path relies on the physician’s dexterity and experience. In this paper we present the realization of a robotic flexible endoscope steering system that uses the endoscopic images to control the tip orientation towards the direction of the lumen. Two image-based control algorithms are investigated, one is based on the optical flow and the other is based on the image intensity. Both are evaluated using simulations in which the endoscope was steered through the lumen. The RMS distance to the lumen center was less than 25% of the lumen width. An experimental setup was built using a standard flexible endoscope, and the image-based control algorithms were used to actuate the wheels of the endoscope for tip steering. Experiments were conducted in an anatomical model to simulate gastroscopy. The image intensity- based algorithm was capable of steering the endoscope tip through an endoluminal path from the mouth to the duodenum accurately. Compared to manual control, the robotically steered endoscope performed 68% better in terms of keeping the lumen centered in the image

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    METHODS, SYSTEMS, AND DEVICES RELATING TO FORCE CONTROL SURGICAL SYSTEMS

    Get PDF
    The various embodiments herein relate to robotic surgical systems and devices that use force and/or torque sensors to measure forces applied at various components of the system or device. Certain implementations include robotic surgical devices having one or more force/torque sensors that detect or measure one or more forces applied at or on one or more arms. Other embodiments relate to systems having a robotic surgical device that has one or more sensors and an external controller that has one or more motors such that the sensors transmit information that is used at the controller to actuate the motors to provide haptic feedback to a user

    Haptic-GeoZui3D: Exploring the Use of Haptics in AUV Path Planning

    Get PDF
    We have developed a desktop virtual reality system that we call Haptic-GeoZui3D, which brings together 3D user interaction and visualization to provide a compelling environment for AUV path planning. A key component in our system is the PHANTOM haptic device (SensAble Technologies, Inc.), which affords a sense of touch and force feedback – haptics – to provide cues and constraints to guide the user’s interaction. This paper describes our system, and how we use haptics to significantly augment our ability to lay out a vehicle path. We show how our system works well for quickly defining simple waypoint-towaypoint (e.g. transit) path segments, and illustrate how it could be used in specifying more complex, highly segmented (e.g. lawnmower survey) paths

    Ocular Endoscopy

    Get PDF

    Visuohaptic Simulation of a Borescope for Aircraft Engine Inspection

    Get PDF
    Consisting of a long, fiber optic probe containing a small CCD camera controlled by hand-held articulation interface, a video borescope is used for remote visual inspection of hard to reach components in an aircraft. The knowledge and psychomotor skills, specifically the hand-eye coordination, required for effective inspection are hard to acquire through limited exposure to the borescope in aviation maintenance schools. Inexperienced aircraft maintenance technicians gain proficiency through repeated hands-on learning in the workplace along a steep learning curve while transitioning from the classroom to the workforce. Using an iterative process combined with focused user evaluations, this dissertation details the design, implementation and evaluation of a novel visuohaptic simulator for training novice aircraft maintenance technicians in the task of engine inspection using a borescope. First, we describe the development of the visual components of the simulator, along with the acquisition and modeling of a representative model of a {PT-6} aircraft engine. Subjective assessments with both expert and novice aircraft maintenance engineers evaluated the visual realism and the control interfaces of the simulator. In addition to visual feedback, probe contact feedback is provided through a specially designed custom haptic interface that simulates tip contact forces as the virtual probe intersects with the {3D} model surfaces of the engine. Compared to other haptic interfaces, the custom design is unique in that it is inexpensive and uses a real borescope probe to simulate camera insertion and withdrawal. User evaluation of this simulator with probe tip feedback suggested a trend of improved performance with haptic feedback. Next, we describe the development of a physically-based camera model for improved behavioral realism of the simulator. Unlike a point-based camera, the enhanced camera model simulates the interaction of the borescope probe, including multiple points of contact along the length of the probe. We present visual comparisons of a real probe\u27s motion with the simulated probe model and develop a simple algorithm for computing the resultant contact forces. User evaluation comparing our custom haptic device with two commonly available haptic devices, the Phantom Omni and the Novint Falcon, suggests that the improved camera model as well as probe contact feedback with the 3D engine model plays a significant role in the overall engine inspection process. Finally, we present results from a skill transfer study comparing classroom-only instruction with both simulator and hands-on training. Students trained using the simulator and the video borescope completed engine inspection using the real video borescope significantly faster than students who received classroom-only training. The speed improvements can be attributed to reduced borescope probe maneuvering time within the engine and improved psychomotor skills due to training. Given the usual constraints of limited time and resources, simulator training may provide beneficial skills needed by novice aircraft maintenance technicians to augment classroom instruction, resulting in a faster transition into the aviation maintenance workforce
    corecore