2,725 research outputs found

    Sorted gene genealogies and species- specific nonsynonymous substitutions point to putative postmating prezygotic isolation genes in Allonemobius crickets

    Get PDF
    Citation: Noh, S., & Marshall, J. L. (2016). Sorted gene genealogies and species- specific nonsynonymous substitutions point to putative postmating prezygotic isolation genes in Allonemobius crickets. Peerj, 4, 29. doi:10.7717/peerj.1678In the Allonemobius socius complex of crickets reproductive isolation is primarily accomplished via postmating prezygotic barriers. We tested seven protein-coding genes expressed in the male ejaculate for patterns of evolution consistent with a putative role as postmating prezygotic isolation genes. Our recently diverged species generally lacked sequence variation. As a result, omega-based tests were only mildly successful. Some of our genes showed evidence of elevated omega values on the internal branches of gene trees. In a couple of genes, these internal branches coincided with both species branching events of the species tree, between A. fasciatus and the other two species, and between A. socius and A. sp. nov. Tex. In comparison, more successful approaches were those that took advantage of the varying degrees of lineage sorting and allele sharing among our young species. These approaches were particularly powerful within the contact zone. Among the genes we tested we found genes with genealogies that indicated relatively advanced degrees of lineage sorting across both allopatric and contact zone alleles. Within a contact zone between two members of the species complex, only a subset of genes maintained allelic segregation despite evidence of ongoing gene flow in other genes. The overlap in these analyses was arginine kinase (AK) and apolipoprotein A-1 binding protein (APBP). These genes represent two of the first examples of sperm maturation, capacitation, and motility proteins with fixed non-synonymous substitutions between species-specific alleles that may lead to postmating prezygotic isolation. Both genes express ejaculate proteins transferred to females during copulation and were previously identified through comparative proteomics. We discuss the potential function of these genes in the context of the specific postmating prezygotic isolation phenotype among, our species, namely conspecific sperm precedence and the superior ability of conspecific males to induce oviposition in females

    Detecting Ancient Balancing Selection: Methods And Application To Human

    Get PDF
    Balancing selection can maintain genetic variation in a population over long evolutionary time periods. Identifying genomic loci under this type of selection not only elucidates selective pressures and adaptations but can also help interpret common genetic variation contributing to disease. Summary statistics which capture signatures in the site frequency spectrum are frequently used to scan the genome to detect loci showing evidence of balancing selection. However, these approaches have limited power because they rely on imprecise signatures such as a general excess of heterozygosity or number of genetic variants. A second class of statistics, based on likelihoods, have higher power but are often computationally prohibitive. In addition, a majority of methods in both classes require a high-quality sequenced outgroup, which is unavailable for many species of interest. Therefore, there is a need for a well-powered and widely-applicable statistical approach to detect balancing selection. Theory suggests that long-term balancing selection will result in a genealogy with very long internal branches. In this thesis, I show that this leads to a precise signature: an excess of genetic variants at near identical allele frequencies to one another. We have developed novel summary statistics to detect this signature of balancing selection, termed the β statistics. Using simulations, we show that these statistics are not only computationally light but also have high power even if an outgroup is unavailable. We have derived the variance of these statistics, allowing proper comparison of β values across sample sizes, mutation rates, and allele frequencies - variables not fully accounted for by many previous methods. We scanned the 1000 Genomes Project data with β to find balanced loci in humans. Here, I report multiple balanced haplotypes that are strongly linked to both association signals for complex traits and regulatory variants, indicating balancing selection may be affecting complex trait architecture. Due to their high power and wide applicability, the β statistics enable evolutionary biologists to detect targets of balancing selection in a range of species and with a degree of specificity previously unattainable

    Manual on application of molecular tools in aquaculture and inland fisheries management. Part 2. Laboratory protocols and data analysis

    Get PDF
    The aim of this manual is to provide a comprehensive practical tool for the generation and analysis of genetic data for subsequent application in aquatic resources management in relation to genetic stock identification in inland fisheries and aquaculture. The material only covers general background on genetics in relation to aquaculture and fisheries resource management, the techniques and relevant methods of data analysis that are commonly used to address questions relating to genetic resource characterisation and population genetic analyses. No attempt is made to include applications of genetic improvement techniques e.g. selective breeding or producing genetically modified organisms (GMOs). The manual includes two ‘stand-alone’ parts, of which this is the second volume: Part 1 – Conceptual basis of population genetic approaches: will provide a basic foundation on genetics in general, and concepts of population genetics. Issues on the choices of molecular markers and project design are also discussed. Part 2 – Laboratory protocols, data management and analysis: will provide step-by-step protocols of the most commonly used molecular genetic techniques utilised in population genetics and systematic studies. In addition, a brief discussion and explanation of how these data are managed and analysed is also included. This manual is expected to enable NACA member country personnel to be trained to undertake molecular genetic studies in their own institutions, and as such is aimed at middle and higher level technical grades. The manual can also provide useful teaching material for specialised advanced level university courses in the region and postgraduate students. The manual has gone through two development/improvement stages. The initial material was tested at a regional workshop and at the second stage feedback from participants was used to improve the contents

    Diversity in the Glucose Transporter-4 Gene (SLC2A4) in Humans Reflects the Action of Natural Selection along the Old-World Primates Evolution

    Get PDF
    BACKGROUND: Glucose is an important source of energy for living organisms. In vertebrates it is ingested with the diet and transported into the cells by conserved mechanisms and molecules, such as the trans-membrane Glucose Transporters (GLUTs). Members of this family have tissue specific expression, biochemical properties and physiologic functions that together regulate glucose levels and distribution. GLUT4 -coded by SLC2A4 (17p13) is an insulin-sensitive transporter with a critical role in glucose homeostasis and diabetes pathogenesis, preferentially expressed in the adipose tissue, heart muscle and skeletal muscle. We tested the hypothesis that natural selection acted on SLC2A4. METHODOLOGY/PRINCIPAL FINDINGS: We re-sequenced SLC2A4 and genotyped 104 SNPs along a approximately 1 Mb region flanking this gene in 102 ethnically diverse individuals. Across the studied populations (African, European, Asian and Latin-American), all the eight common SNPs are concentrated in the N-terminal region upstream of exon 7 ( approximately 3700 bp), while the C-terminal region downstream of intron 6 ( approximately 2600 bp) harbors only 6 singletons, a pattern that is not compatible with neutrality for this part of the gene. Tests of neutrality based on comparative genomics suggest that: (1) episodes of natural selection (likely a selective sweep) predating the coalescent of human lineages, within the last 25 million years, account for the observed reduced diversity downstream of intron 6 and, (2) the target of natural selection may not be in the SLC2A4 coding sequence. CONCLUSIONS: We propose that the contrast in the pattern of genetic variation between the N-terminal and C-terminal regions are signatures of the action of natural selection and thus follow-up studies should investigate the functional importance of different regions of the SLC2A4 gene

    Identifying the favored mutation in a positive selective sweep.

    Get PDF
    Most approaches that capture signatures of selective sweeps in population genomics data do not identify the specific mutation favored by selection. We present iSAFE (for "integrated selection of allele favored by evolution"), a method that enables researchers to accurately pinpoint the favored mutation in a large region (∼5 Mbp) by using a statistic derived solely from population genetics signals. iSAFE does not require knowledge of demography, the phenotype under selection, or functional annotations of mutations

    The expected neutral frequency spectrum of linked sites

    Full text link
    We present an exact, closed expression for the expected neutral Site Frequency Spectrum for two neutral sites, 2-SFS, without recombination. This spectrum is the immediate extension of the well known single site θ/f\theta/f neutral SFS. Similar formulae are also provided for the case of the expected SFS of sites that are linked to a focal neutral mutation of known frequency. Formulae for finite samples are obtained by coalescent methods and remarkably simple expressions are derived for the SFS of a large population, which are also solutions of the multi-allelic Kolmogorov equations. Besides the general interest of these new spectra, they relate to interesting biological cases such as structural variants and introgressions. As an example, we present the expected neutral frequency spectrum of regions with a chromosomal inversion.Comment: 26 pages, 5 figure
    corecore