371 research outputs found

    Evolutionary Responses of a Reef-building Coral to Climate Change at the End of the Last Glacial Maximum

    Get PDF
    Climate change threatens the survival of coral reefs on a global scale, primarily through mass bleaching and mortality as a result of marine heatwaves. While these short-term effects are clear, predicting the fate of coral reefs over the coming century is a major challenge. One way to understand the longer-term effect of rapid climate change is to examine the response of coral populations to past climate shifts. Coastal and shallow-water marine ecosystems such as coral reefs have been reshaped many times by sea-level changes during the Pleistocene, yet few studies have directly linked this with its consequences on population demographics, dispersal, and adaptation. Here we use powerful analytical techniques, afforded by haplotype-phased whole-genomes, to establish such links for the reef-building coral, Acropora digitifera. We show that three genetically distinct populations are present in northwestern Australia, and that their rapid divergence since the last glacial maximum (LGM) can be explained by a combination of founder-effects and restricted gene flow. Signatures of selective sweeps, too strong to be explained by demographic history, are present in all three populations and overlap with genes that show different patterns of functional enrichment between inshore and offshore habitats. In contrast to rapid divergence in the host, we find that photosymbiont communities are largely undifferentiated between corals from all three locations, spanning almost 1000 km, indicating that selection on host genes, and not acquisition of novel symbionts, has been the primary driver of adaptation for this species in northwestern Australia

    Statistical inference for the evolutionary history of cancer genomes

    Get PDF

    Multiple mitochondrial introgression events and heteroplasmy in trypanosoma cruzi revealed by Maxicircle MLST and next generation sequencing

    Get PDF
    Background Mitochondrial DNA is a valuable taxonomic marker due to its relatively fast rate of evolution. In Trypanosoma cruzi, the causative agent of Chagas disease, the mitochondrial genome has a unique structural organization consisting of 20–50 maxicircles (∼20 kb) and thousands of minicircles (0.5–10 kb). T. cruzi is an early diverging protist displaying remarkable genetic heterogeneity and is recognized as a complex of six discrete typing units (DTUs). The majority of infected humans are asymptomatic for life while 30–35% develop potentially fatal cardiac and/or digestive syndromes. However, the relationship between specific clinical outcomes and T. cruzi genotype remains elusive. The availability of whole genome sequences has driven advances in high resolution genotyping techniques and re-invigorated interest in exploring the diversity present within the various DTUs. Methodology/Principal Findings To describe intra-DTU diversity, we developed a highly resolutive maxicircle multilocus sequence typing (mtMLST) scheme based on ten gene fragments. A panel of 32 TcI isolates was genotyped using the mtMLST scheme, GPI, mini-exon and 25 microsatellite loci. Comparison of nuclear and mitochondrial data revealed clearly incongruent phylogenetic histories among different geographical populations as well as major DTUs. In parallel, we exploited read depth data, generated by Illumina sequencing of the maxicircle genome from the TcI reference strain Sylvio X10/1, to provide the first evidence of mitochondrial heteroplasmy (heterogeneous mitochondrial genomes in an individual cell) in T. cruzi. Conclusions/Significance mtMLST provides a powerful approach to genotyping at the sub-DTU level. This strategy will facilitate attempts to resolve phenotypic variation in T. cruzi and to address epidemiologically important hypotheses in conjunction with intensive spatio-temporal sampling. The observations of both general and specific incidences of nuclear-mitochondrial phylogenetic incongruence indicate that genetic recombination is geographically widespread and continues to influence the natural population structure of TcI, a conclusion which challenges the traditional paradigm of clonality in T. cruzi

    Two Evolutionary Histories in the Genome of Rice: the Roles of Domestication Genes

    Get PDF
    Genealogical patterns in different genomic regions may be different due to the joint influence of gene flow and selection. The existence of two subspecies of cultivated rice provides a unique opportunity for analyzing these effects during domestication. We chose 66 accessions from the three rice taxa (about 22 each from Oryza sativa indica, O. sativa japonica, and O. rufipogon) for whole-genome sequencing. In the search for the signature of selection, we focus on low diversity regions (LDRs) shared by both cultivars. We found that the genealogical histories of these overlapping LDRs are distinct from the genomic background. While indica and japonica genomes generally appear to be of independent origin, many overlapping LDRs may have originated only once, as a result of selection and subsequent introgression. Interestingly, many such LDRs contain only one candidate gene of rice domestication, and several known domestication genes have indeed been “rediscovered” by this approach. In summary, we identified 13 additional candidate genes of domestication

    Significance of incongruent DNA loci in the taxonomy of wood-decaying Basidioradulum radula

    Get PDF
    Modern taxonomic studies of Agaricomycetes rely on the integrative analyses of morphology, environmental data, geographic distribution, and usually several DNA loci. However, sampling and selection of DNA loci for the analyses are commonly shallow. In this study, we suggest minimal numbers of necessary specimens to sample and DNA loci to analyze in order to prevent inadequate taxonomic decisions in species groups with minor morphological and genealogical differences. We sampled four unlinked nuclear DNA gene regions (nuc rDNA ITS1-5.8S-ITS2, gh63, rpb2, and tef1) to revise the systematics of a common wood-decaying species Basidioradulum radula (Hymenochaetales) on an intercontinental set of specimens collected in the Northern Hemisphere. The DNA loci analyzed violate the genealogical concordance phylogenetic species recognition principles, thus confirming a single-species interpretation. We conclude that Hyphodontia syringae is a younger synonym of B. radula.Peer reviewe

    Chromosome rearrangements and population genomics

    Get PDF
    Chromosome rearrangements result in changes to the physical linkage and order of sequences in the genome. Although we have known about these mutations for more than a century, we still lack a detailed understanding of how they become fixed and what their effect is on other evolutionary processes. Analysing genome sequences provides a way to address this knowledge gap. In this thesis I compare genome assemblies and use population genomic inference to gain a better understanding of the role that chromosome rearrangements play in evolution. I focus on butterflies in the genus Brenthis, where chromosome numbers are known to vary between species. In chapter 2, I present a genome assembly of Brenthis ino and show that its genome has been shaped by many chromosome rearrangements, including a Z-autosome fusion that is still segregating. In chapter 3, I investigate how synteny information in genome sequences can be used to infer ancestral linkage groups and inter-chromosomal rearrangements, implementing the methods in a command-line tool. In chapter 4, I test whether chromosome fissions and fusions have acted as barriers to gene flow between B. ino and its sister species B. daphne. I find that chromosomes involved in rearrangements have experienced less post-divergence gene flow than the rest of the genome, suggesting that rearrangements have promoted speciation. Finally, in chapter 5, I investigate how chromosome rearrangements have become fixed in B. ino, B. daphne, and a third species, B. hecate. I show that genetic drift is unlikely to be a strong enough force to have fixed very underdominant rearrangements, and that there is only weak evidence that chromosome fusions have become fixed through positive natural selection. In summary, this work provides methods for researching chromosome evolution as well as new results about how rearrangements evolve and impact the speciation process
    corecore