386 research outputs found

    A robust implementation of the Carathéodory-Fejér method

    Get PDF
    Best rational approximations are notoriously difficult to compute. However, the difference between the best rational approximation to a function and its Carathéodory-Fejér (CF) approximation is often so small as to be negligible in practice, while CF approximations are far easier to compute. We present a robust and fast implementation of this method in the chebfun software system and illustrate its use with several examples. Our implementation handles both polynomial and rational approximation and substantially improves upon earlier published software

    Recycling Randomness with Structure for Sublinear time Kernel Expansions

    Get PDF
    We propose a scheme for recycling Gaussian random vectors into structured matrices to approximate various kernel functions in sublinear time via random embeddings. Our framework includes the Fastfood construction as a special case, but also extends to Circulant, Toeplitz and Hankel matrices, and the broader family of structured matrices that are characterized by the concept of low-displacement rank. We introduce notions of coherence and graph-theoretic structural constants that control the approximation quality, and prove unbiasedness and low-variance properties of random feature maps that arise within our framework. For the case of low-displacement matrices, we show how the degree of structure and randomness can be controlled to reduce statistical variance at the cost of increased computation and storage requirements. Empirical results strongly support our theory and justify the use of a broader family of structured matrices for scaling up kernel methods using random features

    Semivariogram methods for modeling Whittle-Mat\'ern priors in Bayesian inverse problems

    Full text link
    We present a new technique, based on semivariogram methodology, for obtaining point estimates for use in prior modeling for solving Bayesian inverse problems. This method requires a connection between Gaussian processes with covariance operators defined by the Mat\'ern covariance function and Gaussian processes with precision (inverse-covariance) operators defined by the Green's functions of a class of elliptic stochastic partial differential equations (SPDEs). We present a detailed mathematical description of this connection. We will show that there is an equivalence between these two Gaussian processes when the domain is infinite -- for us, R2\mathbb{R}^2 -- which breaks down when the domain is finite due to the effect of boundary conditions on Green's functions of PDEs. We show how this connection can be re-established using extended domains. We then introduce the semivariogram method for estimating the Mat\'ern covariance parameters, which specify the Gaussian prior needed for stabilizing the inverse problem. Results are extended from the isotropic case to the anisotropic case where the correlation length in one direction is larger than another. Finally, we consider the situation where the correlation length is spatially dependent rather than constant. We implement each method in two-dimensional image inpainting test cases to show that it works on practical examples

    Speech Analysis with Bessel Functions

    Get PDF
    A signal may be expressed as a I inear combination of other functions, cal led the basis set. This is essentially a model of the waveform or signal. Infinitely many choices are possible for the basis set, with the most common choice being the set of trigonometric functions. This study involves the use of Bessel functions of the first kind as the basis set. The original goal of the research was to develop an automatic speaker recognition scheme, based upon the Fourier Bessel series. But the difficulty of collecting a high quality data base and certain hardware deficiencies precluded the completion of the original goal. Also, it was found that the theoretical foundation for the use of the Fourier-Bessel series for signal analysis was practically nonexistent. For these reasons, the study was confined to general purpose speech analysis and to investigation of the computational algorithms required.Electrical Engineerin

    Structured low-rank methods for robust 3D multi-shot EPI

    Get PDF
    Magnetic resonance imaging (MRI) has inherently slow acquisition speed, and Echo-Planar Imaging (EPI), as an efficient acquisition scheme, has been widely used in functional magnetic resonance imaging (fMRI) where an image series with high temporal resolution is needed to measure neuronal activity. Recently, 3D multi-shot EPI which samples data from an entire 3D volume with repeated shots has been drawing growing interest for fMRI with its high isotropic spatial resolution, particularly at ultra-high fields. However, compared to single-shot EPI, multi-shot EPI is sensitive to any inter-shot instabilities, e.g., subject movement and even physiologically induced field fluctuations. These inter-shot inconsistencies can greatly negate the theoretical benefits of 3D multi-shot EPI over conventional 2D multi-slice acquisitions. Structured low-rank image reconstruction which regularises under-sampled image reconstruction by exploiting the linear dependencies in MRI data has been successfully demonstrated in a variety of applications. In this thesis, a structured low-rank reconstruction method is optimised for 3D multi-shot EPI imaging together with a dedicated sampling pattern termed seg-CAIPI, in order to enhance the robustness to physiological fluctuations and improve the temporal stability of 3D multi-shot EPI for fMRI at 7T. Moreover, a motion compensated structured low-rank reconstruction framework is also presented for robust 3D multi-shot EPI which further takes into account inter-shot instabilities due to bulk motion. Lastly, this thesis also investigates into the improvement of structured low-rank reconstruction from an algorithmic perspective and presents the locally structured low-rank reconstruction scheme

    Applications of Hankel and Regular Matrices in Fourier Series

    Get PDF
    Recently, Alghamdi and Mursaleen (2013) used the Hankel matrix to determine the necessary and suffcient condition to find the sum of the Walsh-Fourier series. In this paper, we propose to use the Hankel matrix as well as any general nonnegative regular matrix to obtain the necessary and sufficient conditions to sum the derived Fourier series and conjugate Fourier series

    Engineering aperiodic spiral order for photonic-plasmonic device applications

    Full text link
    Thesis (Ph.D.)--Boston UniversityDeterministic arrays of metal (i.e., Au) nanoparticles and dielectric nanopillars (i.e., Si and SiN) arranged in aperiodic spiral geometries (Vogel's spirals) are proposed as a novel platform for engineering enhanced photonic-plasmonic coupling and increased light-matter interaction over broad frequency and angular spectra for planar optical devices. Vogel's spirals lack both translational and orientational symmetry in real space, while displaying continuous circular symmetry (i.e., rotational symmetry of infinite order) in reciprocal Fourier space. The novel regime of "circular multiple light scattering" in finite-size deterministic structures will be investigated. The distinctive geometrical structure of Vogel spirals will be studied by a multifractal analysis, Fourier-Bessel decomposition, and Delaunay tessellation methods, leading to spiral structure optimization for novel localized optical states with broadband fluctuations in their photonic mode density. Experimentally, a number of designed passive and active spiral structures will be fabricated and characterized using dark-field optical spectroscopy, ellipsometry, and Fourier space imaging. Polarization-insensitive planar omnidirectional diffraction will be demonstrated and engineered over a large and controllable range of frequencies. Device applications to enhanced LEDs, novel lasers, and thin-film solar cells with enhanced absorption will be specifically targeted. Additionally, using Vogel spirals we investigate the direct (i.e. free space) generation of optical vortices, with well-defined and controllable values of orbital angular momentum, paving the way to the engineering and control of novel types of phase discontinuities (i.e., phase dislocation loops) in compact, chip-scale optical devices. Finally, we report on the design, modeling, and experimental demonstration of array-enhanced nanoantennas for polarization-controlled multispectral nanofocusing, nanoantennas for resonant near-field optical concentration of radiation to individual nanowires, and aperiodic double resonance surface enhanced Raman scattering substrates
    corecore