854 research outputs found

    Cursive Handwriting Segmentation using Ideal Distance Approach

    Get PDF
    Offline cursive handwriting becomes a major challenge due to the huge amount of handwriting varieties such as slant handwriting, space between words, the size and direction of the letter, the style of writing the letter and handwriting with contour similarity on some letters. There are some steps for recursive handwriting recognition. The steps are preprocessing, morphology, segmentation, features of letter extraction and recognition. Segmentation is a crucial process in handwriting recognition since the success of segmentation step will determine the success level of recognition. This paper proposes a segmentation algorithm that segment recursive handwriting into letters. These letters will form words using a method that determine the intersection cutting point of image recursive handwriting with an ideal image distance. The ideal distance of recursive handwriting image is an ideal distance segmentation point in order to avoid the cutting of other letter’s section. The width and height of images are used to determine the accurate segmentation point. There were 999 recursive handwriting input images taken from 25 researchers used for this study. The images used are the images obtained from preprocessing step. Those are the images with slope correction. This study used Support Vector Machine (SVM) to recognize recursive handwriting. The experiments show the proposed segmentation algorithm able to segment the image precisely and have 97% success recognizing the recursive handwriting

    A unified method for augmented incremental recognition of online handwritten Japanese and English text

    Get PDF
    We present a unifed method to augmented incremental recognition for online handwritten Japanese and English text, which is used for busy or on-the-fly recognition while writing, and lazy or delayed recognition after writing, without incurring long waiting times. It extends the local context for segmentation and recognition to a range of recent strokes called "segmentation scope" and "recognition scop", respectively. The recognition scope is inside of the segmentation scope. The augmented incremental recognition triggers recognition at every several recent strokes, updates the segmentation and recognition candidate lattice, and searches over the lattice for the best result incrementally. It also incorporates three techniques. The frst is to reuse the segmentation and recognition candidate lattice in the previous recognition scope for the current recognition scope. The second is to fx undecided segmentation points if they are stable between character/word patterns. The third is to skip recognition of partial candidate character/word patterns. The augmented incremental method includes the case of triggering recognition at every new stroke with the above-mentioned techniques. Experiments conducted on TUAT-Kondate and IAM online database show its superiority to batch recognition (recognizing text at one time) and pure incremental recognition (recognizing text at every input stroke) in processing time, waiting time, and recognition accuracy

    Character Recognition

    Get PDF
    Character recognition is one of the pattern recognition technologies that are most widely used in practical applications. This book presents recent advances that are relevant to character recognition, from technical topics such as image processing, feature extraction or classification, to new applications including human-computer interfaces. The goal of this book is to provide a reference source for academic research and for professionals working in the character recognition field

    Multimodal Interactive Transcription of Handwritten Text Images

    Full text link
    En esta tesis se presenta un nuevo marco interactivo y multimodal para la transcripción de Documentos manuscritos. Esta aproximación, lejos de proporcionar la transcripción completa pretende asistir al experto en la dura tarea de transcribir. Hasta la fecha, los sistemas de reconocimiento de texto manuscrito disponibles no proporcionan transcripciones aceptables por los usuarios y, generalmente, se requiere la intervención del humano para corregir las transcripciones obtenidas. Estos sistemas han demostrado ser realmente útiles en aplicaciones restringidas y con vocabularios limitados (como es el caso del reconocimiento de direcciones postales o de cantidades numéricas en cheques bancarios), consiguiendo en este tipo de tareas resultados aceptables. Sin embargo, cuando se trabaja con documentos manuscritos sin ningún tipo de restricción (como documentos manuscritos antiguos o texto espontáneo), la tecnología actual solo consigue resultados inaceptables. El escenario interactivo estudiado en esta tesis permite una solución más efectiva. En este escenario, el sistema de reconocimiento y el usuario cooperan para generar la transcripción final de la imagen de texto. El sistema utiliza la imagen de texto y una parte de la transcripción previamente validada (prefijo) para proponer una posible continuación. Despues, el usuario encuentra y corrige el siguente error producido por el sistema, generando así un nuevo prefijo mas largo. Este nuevo prefijo, es utilizado por el sistema para sugerir una nueva hipótesis. La tecnología utilizada se basa en modelos ocultos de Markov y n-gramas. Estos modelos son utilizados aquí de la misma manera que en el reconocimiento automático del habla. Algunas modificaciones en la definición convencional de los n-gramas han sido necesarias para tener en cuenta la retroalimentación del usuario en este sistema.Romero Gómez, V. (2010). Multimodal Interactive Transcription of Handwritten Text Images [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8541Palanci

    Off-line Arabic Handwriting Recognition System Using Fast Wavelet Transform

    Get PDF
    In this research, off-line handwriting recognition system for Arabic alphabet is introduced. The system contains three main stages: preprocessing, segmentation and recognition stage. In the preprocessing stage, Radon transform was used in the design of algorithms for page, line and word skew correction as well as for word slant correction. In the segmentation stage, Hough transform approach was used for line extraction. For line to words and word to characters segmentation, a statistical method using mathematic representation of the lines and words binary image was used. Unlike most of current handwriting recognition system, our system simulates the human mechanism for image recognition, where images are encoded and saved in memory as groups according to their similarity to each other. Characters are decomposed into a coefficient vectors, using fast wavelet transform, then, vectors, that represent a character in different possible shapes, are saved as groups with one representative for each group. The recognition is achieved by comparing a vector of the character to be recognized with group representatives. Experiments showed that the proposed system is able to achieve the recognition task with 90.26% of accuracy. The system needs only 3.41 seconds a most to recognize a single character in a text of 15 lines where each line has 10 words on average

    SEARCHING HETEROGENEOUS DOCUMENT IMAGE COLLECTIONS

    Get PDF
    A decrease in data storage costs and widespread use of scanning devices has led to massive quantities of scanned digital documents in corporations, organizations, and governments around the world. Automatically processing these large heterogeneous collections can be difficult due to considerable variation in resolution, quality, font, layout, noise, and content. In order to make this data available to a wide audience, methods for efficient retrieval and analysis from large collections of document images remain an open and important area of research. In this proposal, we present research in three areas that augment the current state of the art in the retrieval and analysis of large heterogeneous document image collections. First, we explore an efficient approach to document image retrieval, which allows users to perform retrieval against large image collections in a query-by-example manner. Our approach is compared to text retrieval of OCR on a collection of 7 million document images collected from lawsuits against tobacco companies. Next, we present research in document verification and change detection, where one may want to quickly determine if two document images contain any differences (document verification) and if so, to determine precisely what and where changes have occurred (change detection). A motivating example is legal contracts, where scanned images are often e-mailed back and forth and small changes can have severe ramifications. Finally, approaches useful for exploiting the biometric properties of handwriting in order to perform writer identification and retrieval in document images are examined

    Classification of Test Documents Based on Handwritten Student ID's Characteristics

    Get PDF
    AbstractThe bag of words (BoW) model is an efficient image representation technique for image categorization and annotation tasks. Building good feature vocabularies from automatically extracted image feature vectors produces discriminative feature words, which can improve the accuracy of image categorization tasks. In this paper we use feature vocabularies based biometric characteristic for identification on student ID and classification of students’ papers and various exam documents used at the University of Mostar. We demonstrated an experiment in which we used OpenCV as an image processing tool and tool for feature extraction. As regards to classification method, we used Neural Network for Recognition of Handwritten Digits (student ID). We tested out proposed method on MNIST test database and achieved recognition rate of 94,76% accuracy. The model is tested on digits which are extracted from the handwritten student exams and the accuracy of 82% is achieved (92% correctly classified digits)
    corecore