961 research outputs found

    An evaluation of a three-modal hand-based database to forensic-based gender recognition

    Get PDF
    In recent years, behavioural soft-biometrics have been widely used to improve biometric systems performance. Information like gender, age and ethnicity can be obtained from more than one behavioural modality. In this paper, we propose a multimodal hand-based behavioural database for gender recognition. Thus, our goal in this paper is to evaluate the performance of the multimodal database. For this, the experiment was realised with 76 users and was collected keyboard dynamics, touchscreen dynamics and handwritten signature data. Our approach consists of compare two-modal and one-modal modalities of the biometric data with the multimodal database. Traditional and new classifiers were used and the statistical Kruskal-Wallis to analyse the accuracy of the databases. The results showed that the multimodal database outperforms the other databases

    An Efficient Hidden Markov Model for Offline Handwritten Numeral Recognition

    Full text link
    Traditionally, the performance of ocr algorithms and systems is based on the recognition of isolated characters. When a system classifies an individual character, its output is typically a character label or a reject marker that corresponds to an unrecognized character. By comparing output labels with the correct labels, the number of correct recognition, substitution errors misrecognized characters, and rejects unrecognized characters are determined. Nowadays, although recognition of printed isolated characters is performed with high accuracy, recognition of handwritten characters still remains an open problem in the research arena. The ability to identify machine printed characters in an automated or a semi automated manner has obvious applications in numerous fields. Since creating an algorithm with a one hundred percent correct recognition rate is quite probably impossible in our world of noise and different font styles, it is important to design character recognition algorithms with these failures in mind so that when mistakes are inevitably made, they will at least be understandable and predictable to the person working with theComment: 6pages, 5 figure

    Classification and Verification of Online Handwritten Signatures with Time Causal Information Theory Quantifiers

    Get PDF
    We present a new approach for online handwritten signature classification and verification based on descriptors stemming from Information Theory. The proposal uses the Shannon Entropy, the Statistical Complexity, and the Fisher Information evaluated over the Bandt and Pompe symbolization of the horizontal and vertical coordinates of signatures. These six features are easy and fast to compute, and they are the input to an One-Class Support Vector Machine classifier. The results produced surpass state-of-the-art techniques that employ higher-dimensional feature spaces which often require specialized software and hardware. We assess the consistency of our proposal with respect to the size of the training sample, and we also use it to classify the signatures into meaningful groups.Comment: Submitted to PLOS On

    Gravitational Search For Designing A Fuzzy Rule-Based Classifiers For Handwritten Signature Verification

    Get PDF
    Handwritten signatures are used in authentication systems as a universal biometric identifier. Signature authenticity verification requires building and training a classifier. This paper describes a new approach to the verification of handwritten signatures by dynamic characteristics with a fuzzy rule-based classifier. It is suggested to use the metaheuristic Gravitational Search Algorithm for the selection of the relevant features and tuning fuzzy rule parameters. The efficiency of the approach was tested with an original dataset; the type II errors in finding the signature authenticity did not exceed 0.5% for the worst model and 0.08% for the best model

    Predictive biometrics: A review and analysis of predicting personal characteristics from biometric data

    Get PDF
    Interest in the exploitation of soft biometrics information has continued to develop over the last decade or so. In comparison with traditional biometrics, which focuses principally on person identification, the idea of soft biometrics processing is to study the utilisation of more general information regarding a system user, which is not necessarily unique. There are increasing indications that this type of data will have great value in providing complementary information for user authentication. However, the authors have also seen a growing interest in broadening the predictive capabilities of biometric data, encompassing both easily definable characteristics such as subject age and, most recently, `higher level' characteristics such as emotional or mental states. This study will present a selective review of the predictive capabilities, in the widest sense, of biometric data processing, providing an analysis of the key issues still adequately to be addressed if this concept of predictive biometrics is to be fully exploited in the future

    BioTouchPass: Handwritten Passwords for Touchscreen Biometrics

    Full text link
    This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibleThis work enhances traditional authentication systems based on Personal Identification Numbers (PIN) and One- Time Passwords (OTP) through the incorporation of biometric information as a second level of user authentication. In our proposed approach, users draw each digit of the password on the touchscreen of the device instead of typing them as usual. A complete analysis of our proposed biometric system is carried out regarding the discriminative power of each handwritten digit and the robustness when increasing the length of the password and the number of enrolment samples. The new e-BioDigit database, which comprises on-line handwritten digits from 0 to 9, has been acquired using the finger as input on a mobile device. This database is used in the experiments reported in this work and it is available together with benchmark results in GitHub1. Finally, we discuss specific details for the deployment of our proposed approach on current PIN and OTP systems, achieving results with Equal Error Rates (EERs) ca. 4.0% when the attacker knows the password. These results encourage the deployment of our proposed approach in comparison to traditional PIN and OTP systems where the attack would have 100% success rate under the same impostor scenarioThis work has been supported by projects: BIBECA (MINECO), Bio-Guard (Ayudas Fundación BBVA a Equipos de Investigación Científica 2017) and by UAM-CecaBank. Ruben Tolosana is supported by a FPU Fellowship from Spanish MEC

    Texture Analysis for Off-Line Signature Verification

    Get PDF

    CSSL-RHA: Contrastive Self-Supervised Learning for Robust Handwriting Authentication

    Full text link
    Handwriting authentication is a valuable tool used in various fields, such as fraud prevention and cultural heritage protection. However, it remains a challenging task due to the complex features, severe damage, and lack of supervision. In this paper, we propose a novel Contrastive Self-Supervised Learning framework for Robust Handwriting Authentication (CSSL-RHA) to address these issues. It can dynamically learn complex yet important features and accurately predict writer identities. Specifically, to remove the negative effects of imperfections and redundancy, we design an information-theoretic filter for pre-processing and propose a novel adaptive matching scheme to represent images as patches of local regions dominated by more important features. Through online optimization at inference time, the most informative patch embeddings are identified as the "most important" elements. Furthermore, we employ contrastive self-supervised training with a momentum-based paradigm to learn more general statistical structures of handwritten data without supervision. We conduct extensive experiments on five benchmark datasets and our manually annotated dataset EN-HA, which demonstrate the superiority of our CSSL-RHA compared to baselines. Additionally, we show that our proposed model can still effectively achieve authentication even under abnormal circumstances, such as data falsification and corruption.Comment: 10 pages, 4 figures, 3 tables, submitted to ACM MM 202

    Handwriting in Forensic Investigations

    Get PDF
    The process of automatic handwriting investigation in forensic science is described. The general scheme of a computer-based handwriting analysis system is used to point out at the basic problems of image enhancement and segmentation, feature extraction and decision-making. Factors that may compromise the accuracy of expert’s conclusion are underlined and directions for future investigations are marked
    corecore