8,775 research outputs found

    Deep Adaptive Learning for Writer Identification based on Single Handwritten Word Images

    Get PDF
    There are two types of information in each handwritten word image: explicit information which can be easily read or derived directly, such as lexical content or word length, and implicit attributes such as the author's identity. Whether features learned by a neural network for one task can be used for another task remains an open question. In this paper, we present a deep adaptive learning method for writer identification based on single-word images using multi-task learning. An auxiliary task is added to the training process to enforce the emergence of reusable features. Our proposed method transfers the benefits of the learned features of a convolutional neural network from an auxiliary task such as explicit content recognition to the main task of writer identification in a single procedure. Specifically, we propose a new adaptive convolutional layer to exploit the learned deep features. A multi-task neural network with one or several adaptive convolutional layers is trained end-to-end, to exploit robust generic features for a specific main task, i.e., writer identification. Three auxiliary tasks, corresponding to three explicit attributes of handwritten word images (lexical content, word length and character attributes), are evaluated. Experimental results on two benchmark datasets show that the proposed deep adaptive learning method can improve the performance of writer identification based on single-word images, compared to non-adaptive and simple linear-adaptive approaches.Comment: Under view of Pattern Recognitio

    Learning Task Relatedness in Multi-Task Learning for Images in Context

    Full text link
    Multimedia applications often require concurrent solutions to multiple tasks. These tasks hold clues to each-others solutions, however as these relations can be complex this remains a rarely utilized property. When task relations are explicitly defined based on domain knowledge multi-task learning (MTL) offers such concurrent solutions, while exploiting relatedness between multiple tasks performed over the same dataset. In most cases however, this relatedness is not explicitly defined and the domain expert knowledge that defines it is not available. To address this issue, we introduce Selective Sharing, a method that learns the inter-task relatedness from secondary latent features while the model trains. Using this insight, we can automatically group tasks and allow them to share knowledge in a mutually beneficial way. We support our method with experiments on 5 datasets in classification, regression, and ranking tasks and compare to strong baselines and state-of-the-art approaches showing a consistent improvement in terms of accuracy and parameter counts. In addition, we perform an activation region analysis showing how Selective Sharing affects the learned representation.Comment: To appear in ICMR 2019 (Oral + Lightning Talk + Poster

    Beyond human: deep learning, explainability and representation

    Get PDF
    This article addresses computational procedures that are no longer constrained by human modes of representation and considers how these procedures could be philosophically understood in terms of ‘algorithmic thought’. Research in deep learning is its case study. This artificial intelligence (AI) technique operates in computational ways that are often opaque. Such a black-box character demands rethinking the abstractive operations of deep learning. The article does so by entering debates about explainability in AI and assessing how technoscience and technoculture tackle the possibility to ‘re-present’ the algorithmic procedures of feature extraction and feature learning to the human mind. The article thus mobilises the notion of incommensurability (originally developed in the philosophy of science) to address explainability as a communicational and representational issue, which challenges phenomenological and existential modes of comparison between human and algorithmic ‘thinking’ operations

    Visual Representation Determines Search Difficulty: Explaining Visual Search Asymmetries

    Get PDF
    In visual search experiments there exist a variety of experimental paradigms in which a symmetric set of experimental conditions yields asymmetric corresponding task performance. There are a variety of examples of this that currently lack a satisfactory explanation. In this paper, we demonstrate that distinct classes of asymmetries may be explained by virtue of a few simple conditions that are consistent with current thinking surrounding computational modeling of visual search and coding in the primate brain. This includes a detailed look at the role that stimulus familiarity plays in the determination of search performance. Overall, we demonstrate that all of these asymmetries have a common origin, namely, they are a consequence of the encoding that appears in the visual cortex. The analysis associated with these cases yields insight into the problem of visual search in general and predictions of novel search asymmetries

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    Dreaming Denationalized Law: Scholarship on Autonomous International Arbitration as Utopian Literature

    Get PDF
    A completely denationalised law is of course a utopia. But it is a utopia not just in the broad sense of being unrealistic, at least for the present, and perhaps also for the future. No, it is a utopia in the very literal sense of the word. Recall what utopia means in Greek: no place. Delocalised arbitration, non-state law, is, quite literally, no-place law. It thus makes up a utopia in the central meaning of the term. International Commercial Arbitration should be just about money. But its scholarship is full of invocations of dreams, visions, faith, utopia. These are not merely ornamental. Rather, they invite us to read the scholarship as utopian literature. Doing so yields unexpected insights into the state of globalised law, and the precarious place of arbitration within i

    Knowledge Elicitation in Deep Learning Models

    Get PDF
    Embora o aprendizado profundo (mais conhecido como deep learning) tenha se tornado uma ferramenta popular na solução de problemas modernos em vários domínios, ele apresenta um desafio significativo - a interpretabilidade. Esta tese percorre um cenário de elicitação de conhecimento em modelos de deep learning, lançando luz sobre a visualização de características, mapas de saliência e técnicas de destilação. Estas técnicas foram aplicadas a duas arquiteturas: redes neurais convolucionais (CNNs) e um modelo de pacote (Google Vision). A nossa investigação forneceu informações valiosas sobre a sua eficácia na elicitação e interpretação do conhecimento codificado. Embora tenham demonstrado potencial, também foram observadas limitações, sugerindo espaço para mais desenvolvimento neste campo. Este trabalho não só realça a necessidade de modelos de deep learning mais transparentes e explicáveis, como também impulsiona o desenvolvimento de técnicas para extrair conhecimento. Trata-se de garantir uma implementação responsável e enfatizar a importância da transparência e compreensão no aprendizado de máquina. Além de avaliar os métodos existentes, esta tese explora também o potencial de combinar múltiplas técnicas para melhorar a interpretabilidade dos modelos de deep learning. Uma mistura de visualização de características, mapas de saliência e técnicas de destilação de modelos foi usada de uma maneira complementar para extrair e interpretar o conhecimento das arquiteturas escolhidas. Os resultados experimentais destacam a utilidade desta abordagem combinada, revelando uma compreensão mais abrangente dos processos de tomada de decisão dos modelos. Além disso, propomos um novo modelo para a elicitação sistemática de conhecimento em deep learning, que integra de forma coesa estes métodos. Este quadro demonstra o valor de uma abordagem holística para a interpretabilidade do modelo, em vez de se basear num único método. Por fim, discutimos as implicações éticas do nosso trabalho. À medida que os modelos de deep learning continuam a permear vários setores, desde a saúde até às finanças, garantir que as suas decisões são explicáveis e justificadas torna-se cada vez mais crucial. A nossa investigação sublinha esta importância, preparando o terreno para a criação de sistemas de inteligência artificial mais transparentes e responsáveis no futuro.Though a buzzword in modern problem-solving across various domains, deep learning presents a significant challenge - interpretability. This thesis journeys through a landscape of knowledge elicitation in deep learning models, shedding light on feature visualization, saliency maps, and model distillation techniques. These techniques were applied to two deep learning architectures: convolutional neural networks (CNNs) and a black box package model (Google Vision). Our investigation provided valuable insights into their effectiveness in eliciting and interpreting the encoded knowledge. While they demonstrated potential, limitations were also observed, suggesting room for further development in this field. This work does not just highlight the need for more transparent, more explainable deep learning models, it gives a gentle nudge to developing innovative techniques to extract knowledge. It is all about ensuring responsible deployment and emphasizing the importance of transparency and comprehension in machine learning. In addition to evaluating existing methods, this thesis also explores the potential for combining multiple techniques to enhance the interpretability of deep learning models. A blend of feature visualization, saliency maps, and model distillation techniques was used in a complementary manner to extract and interpret the knowledge from our chosen architectures. Experimental results highlight the utility of this combined approach, revealing a more comprehensive understanding of the models' decision-making processes. Furthermore, we propose a novel framework for systematic knowledge elicitation in deep learning, which cohesively integrates these methods. This framework showcases the value of a holistic approach toward model interpretability rather than relying on a single method. Lastly, we discuss the ethical implications of our work. As deep learning models continue to permeate various sectors, from healthcare to finance, ensuring their decisions are explainable and justified becomes increasingly crucial. Our research underscores this importance, laying the groundwork for creating more transparent, accountable AI systems in the future
    corecore