3 research outputs found

    Geometric validation of a computer simulator used in radiography education

    Get PDF
    The radiographical process of projection of a complex human form onto a two-dimensional image plane gives rise to distortions and magnifications. It is important that any simulation used for educational purposes should correctly reproduce these. Images generated using a commercially available computer simulation widely used in radiography education (ProjectionVRTM) were tested for geometric accuracy of projection in all planes.Methods:An anthropomorphic skull phantom was imaged using standard projection radiography techniques and also scanned using axial CT acquisition. The data from the CT was then loaded into the simulator and the same projection radiography techniques simulated. Bony points were identified on both the real radiographs and the digitally reconstructed radiographs (DRRs). Measurements sensitive to rotation and magnification were chosen to check for rotation and distortion errors.Results:The real radiographs and the DRRs were compared by four experienced observers and measurements taken between the identified bony points on each of the images obtained. Analysis of the mean observations shows that the measurement from the DRR matches the real radiograph +1.5 mm/−1.5 mm. The Bland Altman bias was 0.55 (1.26 STD), with 95% limits of agreement 3.01 to −1.91.Conclusions:Agreement between the empirical measurements is within the reported error of cephalometric analysis in all three anatomical planes. The image appearances of both the real radiographs and DRRs compared favourably.Advances in knowledge:The commercial computer simulator under test (ProjectionVRTM) was able to faithfully recreate the image appearances of real radiography techniques, including magnification and distortion. Students using this simulation for training will obtain feedback likely to be useful when lessons are applied to real-world situations

    Fast GPU-Based Seismogram Simulation From Microseismic Events in Marine Environments Using Heterogeneous Velocity Models

    Get PDF
    A novel approach is presented for fast generation of synthetic seismograms due to microseismic events, using heterogeneous marine velocity models. The partial differential equations (PDEs) for the 3D elastic wave equation have been numerically solved using the Fourier domain pseudo-spectral method which is parallelizable on the graphics processing unit (GPU) cards, thus making it faster compared to traditional CPU based computing platforms. Due to computationally expensive forward simulation of large geological models, several combinations of individual synthetic seismic traces are used for specified microseismic event locations, in order to simulate the effect of realistic microseismic activity patterns in the subsurface. We here explore the patterns generated by few hundreds of microseismic events with different source mechanisms using various combinations, both in event amplitudes and origin times, using the simulated pressure and three component particle velocity fields via 1D, 2D and 3D seismic visualizations.Shell Projects and Technolog
    corecore