81 research outputs found

    Recognition of handwritten Chinese characters by combining regularization, Fisher's discriminant and distorted sample generation

    Get PDF
    Proceedings of the 10th International Conference on Document Analysis and Recognition, 2009, p. 1026–1030The problem of offline handwritten Chinese character recognition has been extensively studied by many researchers and very high recognition rates have been reported. In this paper, we propose to further boost the recognition rate by incorporating a distortion model that artificially generates a huge number of virtual training samples from existing ones. We achieve a record high recognition rate of 99.46% on the ETL-9B database. Traditionally, when the dimension of the feature vector is high and the number of training samples is not sufficient, the remedies are to (i) regularize the class covariance matrices in the discriminant functions, (ii) employ Fisher's dimension reduction technique to reduce the feature dimension, and (iii) generate a huge number of virtual training samples from existing ones. The second contribution of this paper is the investigation of the relative effectiveness of these three methods for boosting the recognition rate. © 2009 IEEE.published_or_final_versio

    Feature Extraction Methods for Character Recognition

    Get PDF
    Not Include

    Deep Learning Architectures for Novel Problems

    Get PDF
    With convolutional neural networks revolutionizing the computer vision field it is important to extend the capabilities of neural-based systems to dynamic and unrestricted data like graphs. Doing so not only expands the applications of such systems, but also provide more insight into improvements to neural-based systems. Currently most implementations of graph neural networks are based on vertex filtering on fixed adjacency matrices. Although important for a lot of applications, vertex filtering restricts the applications to vertex focused graphs and cannot be efficiently extended to edge focused graphs like social networks. Applications of current systems are mostly limited to images and document references. Beyond the graph applications, this work also explored the usage of convolutional neural networks for intelligent character recognition in a novel way. Most systems define Intelligent Character Recognition as either a recurrent classification problem or image classification. This achieves great performance in a limited environment but does not generalize well on real world applications. This work defines intelligent Character Recognition as a segmentation problem which we show to provide many benefits. The goal of this work was to explore alternatives to current graph neural networks implementations as well as exploring new applications of such system. This work also focused on improving Intelligent Character Recognition techniques on isolated words using deep learning techniques. Due to the contrast between these to contributions this documents was divided into Part I focusing on the graph work, and Part II focusing on the intelligent character recognition work

    Investigation of normalization techniques and their impact on a recognition rate in handwritten numeral recognition

    Get PDF
    This paper presents several normalization techniques used in handwritten numeral recognition and their impact on recognition rates. Experiments with five different feature vectors based on geometric invariants, Zernike moments and gradient features are conducted. The recognition rates obtained using combination of these methods with gradient features and the SVM-rbf classifier are comparable to the best state-of-art techniques

    A novel approach to handwritten character recognition

    Get PDF
    A number of new techniques and approaches for off-line handwritten character recognition are presented which individually make significant advancements in the field. First. an outline-based vectorization algorithm is described which gives improved accuracy in producing vector representations of the pen strokes used to draw characters. Later. Vectorization and other types of preprocessing are criticized and an approach to recognition is suggested which avoids separate preprocessing stages by incorporating them into later stages. Apart from the increased speed of this approach. it allows more effective alteration of the character images since more is known about them at the later stages. It also allows the possibility of alterations being corrected if they are initially detrimental to recognition. A new feature measurement. the Radial Distance/Sector Area feature. is presented which is highly robust. tolerant to noise. distortion and style variation. and gives high accuracy results when used for training and testing in a statistical or neural classifier. A very powerful classifier is therefore obtained for recognizing correctly segmented characters. The segmentation task is explored in a simple system of integrated over-segmentation. Character classification and approximate dictionary checking. This can be extended to a full system for handprinted word recognition. In addition to the advancements made by these methods. a powerful new approach to handwritten character recognition is proposed as a direction for future research. This proposal combines the ideas and techniques developed in this thesis in a hierarchical network of classifier modules to achieve context-sensitive. off-line recognition of handwritten text. A new type of "intelligent" feedback is used to direct the search to contextually sensible classifications. A powerful adaptive segmentation system is proposed which. when used as the bottom layer in the hierarchical network. allows initially incorrect segmentations to be adjusted according to the hypotheses of the higher level context modules
    corecore