2,560 research outputs found

    IP-Based Mobility Management and Handover Latency Measurement in heterogeneous environments

    Get PDF
    One serious concern in the ubiquitous networks is the seamless vertical handover management between different wireless technologies. To meet this challenge, many standardization organizations proposed different protocols at different layers of the protocol stack. The Internet Engineering Task Force (IETF) has different groups working on mobility at IP level in order to enhance mobile IPv4 and mobile IPv6 with different variants: HMIPv6 (Hierarchical Mobile IPv6), FMIPv6 (Fast Mobile IPv6) and PMIPv6 (Proxy Mobile IPv6) for seamless handover. Moreover, the IEEE 802.21 standard provides another framework for seamless handover. The 3GPP standard provides the Access Network and Selection Function (ANDSF) to support seamless handover between 3GPP – non 3GPP networks like Wi-Fi, considered as untrusted, and WIMAX considered as trusted networks. In this paper, we present an in-depth analysis of seamless vertical handover protocols and a handover latency comparison of the main mobility management approaches in the literature. The comparison shows the advantages and drawbacks of every mechanism in order to facilitate the adoption of the convenient one for vertical handover within Next Generation Network (NGN) environments. Keywords: Seamless vertical handover, mobility management protocols, IEEE 802.21 MIH, handover latenc

    Advanced mobility handover for mobile IPv6 based wireless networks

    Get PDF
    We propose an Advanced Mobility Handover scheme (AMH) in this paper for seamless mobility in MIPv6-based wireless networks. In the proposed scheme, the mobile node utilizes a unique home IPv6 address developed to maintain communication with other corresponding nodes without a care-of-address during the roaming process. The IPv6 address for each MN during the first round of AMH process is uniquely identified by HA using the developed MN-ID field as a global permanent, which is identifying uniquely the IPv6 address of MN. Moreover, a temporary MN-ID is generated by access point each time an MN is associated with a particular AP and temporarily saved in a developed table inside the AP. When employing the AMH scheme, the handover process in the network layer is performed prior to its default time. That is, the mobility handover process in the network layer is tackled by a trigger developed AMH message to the next access point. Thus, a mobile node keeps communicating with the current access point while the network layer handover is executed by the next access point. The mathematical analyses and simulation results show that the proposed scheme performs better as compared with the existing approaches.Sadiq, AS.; Fisal, NB.; Ghafoor, KZ.; Lloret, J. (2014). Advanced mobility handover for mobile IPv6 based wireless networks. Scientific World Journal. 2014. doi:10.1155/2014/602808S2014You, I., Han, Y.-H., Chen, Y.-S., & Chao, H.-C. (2011). Next generation mobility management. Wireless Communications and Mobile Computing, 11(4), 443-445. doi:10.1002/wcm.1136Li, L., Ma, L., Xu, Y., & Fu, Y. (2014). Motion Adaptive Vertical Handoff in Cellular/WLAN Heterogeneous Wireless Network. The Scientific World Journal, 2014, 1-7. doi:10.1155/2014/341038Nahrstedt, K. (2011). Quality of Service in Wireless Networks Over Unlicensed Spectrum. Synthesis Lectures on Mobile and Pervasive Computing, 6(1), 1-176. doi:10.2200/s00383ed1v01y201109mpc008Cho, I., Okamura, K., Kim, T. W., & Hong, C. S. (2013). Performance analysis of IP mobility with multiple care-of addresses in heterogeneous wireless networks. Wireless Networks, 19(6), 1375-1386. doi:10.1007/s11276-012-0539-8Magagula, L. A., Chan, H. A., & Falowo, O. E. (2011). Handover approaches for seamless mobility management in next generation wireless networks. Wireless Communications and Mobile Computing, 12(16), 1414-1428. doi:10.1002/wcm.1074Sadiq, A. S., Bakar, K. A., Ghafoor, K. Z., Lloret, J., & Mirjalili, S. (2012). A smart handover prediction system based on curve fitting model for Fast Mobile IPv6 in wireless networks. International Journal of Communication Systems, 27(7), 969-990. doi:10.1002/dac.2386Sadiq, A. S., Bakar, K. A., Ghafoor, K. Z., Lloret, J., & Khokhar, R. (2013). An Intelligent Vertical Handover Scheme for Audio and Video Streaming in Heterogeneous Vehicular Networks. Mobile Networks and Applications, 18(6), 879-895. doi:10.1007/s11036-013-0465-8Lee, K.-W., Seo, W.-K., Cho, Y.-Z., Kim, J.-W., Park, J.-S., & Moon, B.-S. (2009). Inter-domain handover scheme using an intermediate mobile access gateway for seamless service in vehicular networks. International Journal of Communication Systems, 23(9-10), 1127-1144. doi:10.1002/dac.1076Lee, C.-W., Chen, M. C., & Sun, Y. S. (2012). Protocol and architecture supports for network mobility with QoS-handover for high-velocity vehicles. Wireless Networks, 19(5), 811-830. doi:10.1007/s11276-012-0503-7Castelluccia, C. (2000). HMIPv6. ACM SIGMOBILE Mobile Computing and Communications Review, 4(1), 48-59. doi:10.1145/360449.360474Modares, H., Moravejosharieh, A., Lloret, J., & Salleh, R. B. (2016). A Survey on Proxy Mobile IPv6 Handover. IEEE Systems Journal, 10(1), 208-217. doi:10.1109/jsyst.2013.2297705Modares, H., Moravejosharieh, A., Lloret, J., & Salleh, R. (2014). A survey of secure protocols in Mobile IPv6. Journal of Network and Computer Applications, 39, 351-368. doi:10.1016/j.jnca.2013.07.013Modares, H., Moravejosharieh, A., Salleh, R. B., & Lloret, J. (2014). Enhancing Security in Mobile IPv6. ETRI Journal, 36(1), 51-61. doi:10.4218/etrij.14.0113.0177Meneguette, R. I., Bittencourt, L. F., & Madeira, E. R. M. (2013). A seamless flow mobility management architecture for vehicular communication networks. Journal of Communications and Networks, 15(2), 207-216. doi:10.1109/jcn.2013.000034Al-Surmi, I., Othman, M., Abdul Hamid, N. A. W., & Ali, B. M. (2013). Enhancing inter-PMIPv6-domain for superior handover performance across IP-based wireless domain networks. Wireless Networks, 19(6), 1317-1336. doi:10.1007/s11276-012-0535-

    Motorized cart

    Get PDF
    Motorized cart is known as an effective tool and timeless that help people carry heavy loads. For farmers, it has an especially vital tool for moving goods. Oil palm farmers typically uses the wheelbarrow to move the oil palm fruit (Figure 10.1). However, there is a lack of equipment that should be further enhanced in capabilities. Motorized carts that seek to add automation to wheelbarrow as it is to help people save manpower while using it. At present, oil palm plantation industry is among the largest in Malaysia. However, in an effort to increase the prestige of the industry to a higher level there are challenges to be faced. Shortage of workers willing to work the farm for harvesting oil palm has given pain to manage oil palm plantations. Many have complained about the difficulty of hiring foreign workers and a high cost. Although there are tools that can be used to collect or transfer the proceeds of oil palm fruits such as carts available. However, these tools still have the disadvantage that requires high manpower to operate. Moreover, it is not suitable for all land surfaces and limited cargo space. Workload and manpower dependence has an impact on farmers' income

    An adaptive handover prediction scheme for seamless mobility based wireless networks

    Get PDF
    We propose an adaptive handover prediction (AHP) scheme for seamless mobility based wireless networks. That is, the AHP scheme incorporates fuzzy logic with AP prediction process in order to lend cognitive capability to handover decision making. Selection metrics, including received signal strength, mobile node relative direction towards the access points in the vicinity, and access point load, are collected and considered inputs of the fuzzy decision making system in order to select the best preferable AP around WLANs. The obtained handover decision which is based on the calculated quality cost using fuzzy inference system is also based on adaptable coefficients instead of fixed coefficients. In other words, the mean and the standard deviation of the normalized network prediction metrics of fuzzy inference system, which are collected from available WLANs are obtained adaptively. Accordingly, they are applied as statistical information to adjust or adapt the coefficients of membership functions. In addition, we propose an adjustable weight vector concept for input metrics in order to cope with the continuous, unpredictable variation in their membership degrees. Furthermore, handover decisions are performed in each MN independently after knowing RSS, direction toward APs, and AP load. Finally, performance evaluation of the proposed scheme shows its superiority compared with representatives of the prediction approaches.Sadiq, AS.; Fisal, NB.; Ghafoor, KZ.; Lloret, J. (2014). An adaptive handover prediction scheme for seamless mobility based wireless networks. Scientific World Journal. 2014. doi:10.1155/2014/610652S2014You, I., Han, Y.-H., Chen, Y.-S., & Chao, H.-C. (2011). Next generation mobility management. Wireless Communications and Mobile Computing, 11(4), 443-445. doi:10.1002/wcm.1136Sepúlveda, R., Montiel-Ross, O., Quiñones-Rivera, J., & Quiroz, E. E. (2012). WLAN Cell Handoff Latency Abatement Using an FPGA Fuzzy Logic Algorithm Implementation. Advances in Fuzzy Systems, 2012, 1-10. doi:10.1155/2012/219602Song, W. (2012). Resource reservation for mobile hotspots in vehicular environments with cellular/WLAN interworking. EURASIP Journal on Wireless Communications and Networking, 2012(1). doi:10.1186/1687-1499-2012-18Sadiq, A. S., Bakar, K. A., Ghafoor, K. Z., Lloret, J., & Khokhar, R. (2013). An Intelligent Vertical Handover Scheme for Audio and Video Streaming in Heterogeneous Vehicular Networks. Mobile Networks and Applications, 18(6), 879-895. doi:10.1007/s11036-013-0465-8Nahrstedt, K. (2011). Quality of Service in Wireless Networks Over Unlicensed Spectrum. Synthesis Lectures on Mobile and Pervasive Computing, 6(1), 1-176. doi:10.2200/s00383ed1v01y201109mpc008Magagula, L. A., Chan, H. A., & Falowo, O. E. (2011). Handover approaches for seamless mobility management in next generation wireless networks. Wireless Communications and Mobile Computing, 12(16), 1414-1428. doi:10.1002/wcm.1074Sadiq, A. S., Bakar, K. A., Ghafoor, K. Z., Lloret, J., & Mirjalili, S. (2012). A smart handover prediction system based on curve fitting model for Fast Mobile IPv6 in wireless networks. International Journal of Communication Systems, 27(7), 969-990. doi:10.1002/dac.2386Çeken, C., Yarkan, S., & Arslan, H. (2010). Interference aware vertical handoff decision algorithm for quality of service support in wireless heterogeneous networks. Computer Networks, 54(5), 726-740. doi:10.1016/j.comnet.2009.09.018Dutta, A., Das, S., Famolari, D., Ohba, Y., Taniuchi, K., Fajardo, V., … Schulzrinne, H. (2007). Seamless proactive handover across heterogeneous access networks. Wireless Personal Communications, 43(3), 837-855. doi:10.1007/s11277-007-9266-3Xu, C., Teng, J., & Jia, W. (2010). Enabling faster and smoother handoffs in AP-dense 802.11 wireless networks. Computer Communications, 33(15), 1795-1803. doi:10.1016/j.comcom.2010.04.044Holis, J., & Pechac, P. (2008). Elevation Dependent Shadowing Model for Mobile Communications via High Altitude Platforms in Built-Up Areas. IEEE Transactions on Antennas and Propagation, 56(4), 1078-1084. doi:10.1109/tap.2008.91920

    A Survey on Handover Management in Mobility Architectures

    Full text link
    This work presents a comprehensive and structured taxonomy of available techniques for managing the handover process in mobility architectures. Representative works from the existing literature have been divided into appropriate categories, based on their ability to support horizontal handovers, vertical handovers and multihoming. We describe approaches designed to work on the current Internet (i.e. IPv4-based networks), as well as those that have been devised for the "future" Internet (e.g. IPv6-based networks and extensions). Quantitative measures and qualitative indicators are also presented and used to evaluate and compare the examined approaches. This critical review provides some valuable guidelines and suggestions for designing and developing mobility architectures, including some practical expedients (e.g. those required in the current Internet environment), aimed to cope with the presence of NAT/firewalls and to provide support to legacy systems and several communication protocols working at the application layer

    Interworking Architectures in Heterogeneous Wireless Networks: An Algorithmic Overview

    Get PDF
    The scarce availability of spectrum and the proliferation of smartphones, social networking applications, online gaming etc., mobile network operators (MNOs) are faced with an exponential growth in packet switched data requirements on their networks. Haven invested in legacy systems (such as HSPA, WCDMA, WiMAX, Cdma2000, LTE, etc.) that have hitherto withstood the current and imminent data usage demand, future and projected usage surpass the capabilities of the evolution of these individual technologies. Hence, a more critical, cost-effective and flexible approach to provide ubiquitous coverage for the user using available spectrum is of high demand. Heterogeneous Networks make use of these legacy systems by allowing users to connect to the best network available and most importantly seamlessly handover active sessions amidst them. This paper presents a survey of interworking architectures between IMT 2000 candidate networks that employ the use of IEFT protocols such as MIP, mSCTP, HIP, MOBIKE, IKEV2 and SIP etc. to bring about this much needed capacity

    Multicast Mobility in Mobile IP Version 6 (MIPv6) : Problem Statement and Brief Survey

    Get PDF
    Publisher PD
    • …
    corecore