2 research outputs found

    Fast and efficient energy-oriented cell assignment in heterogeneous networks

    Get PDF
    The cell assignment problem is combinatorial, with increased complexity when it is tackled considering resource allocation. This paper models joint cell assignment and resource allocation for cellular heterogeneous networks, and formalizes cell assignment as an optimization problem. Exact algorithms can find optimal solutions to the cell assignment problem, but their execution time increases drastically with realistic network deployments. In turn, heuristics are able to find solutions in reasonable execution times, but they get usually stuck in local optima, thus failing to find optimal solutions. Metaheuristic approaches have been successful in finding solutions closer to the optimum one to combinatorial problems for large instances. In this paper we propose a fast and efficient heuristic that yields very competitive cell assignment solutions compared to those obtained with three of the most widely-used metaheuristics, which are known to find solutions close to the optimum due to the nature of their search space exploration. Our heuristic approach adds energy expenditure reduction in its algorithmic design. Through simulation and formal statistical analysis, the proposed scheme has been proved to produce efficient assignments in terms of the number of served users, resource allocation and energy savings, while being an order of magnitude faster than metaheuritsic-based approaches.This paper has been supported by the National Council of Research and Technology (CONACYT) through Grant FONCICYT/272278 and the ERANetLAC (Network of the European Union, Latin America, and the Caribbean Countries) Project ELAC2015/T100761. This paper is partially supported also by the ADVICE Project, TEC2015-71329 (MINECO/FEDER) and the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 777067 (NECOS Project)

    Advanced Technologies for Energy Saving, Wireless Backhaul and Mobility Management in Heterogeneous Networks

    Get PDF
    In recent years, due to the increasing number of existing and new devices and applications, the wireless industry has experienced an explosion of data traffic usage. As a result, new wireless technologies have been developed to address the capacity crunch. Long-Term Evolution-Licensed Assisted Access (LTE-LAA) is developed to provide the tremendous capacity by extending LTE to 5 GHz unlicensed spectrum. Hyper-dense small cells deployment is another promising technique that can provide a ten to one hundred times capacity gain by bringing small cells closer to mobile user equipments [1]. In this thesis, I focus on three problems related to these two techniques. In Chapter 3, I present a novel activation and sleep mechanism for energy efficient small cell heterogeneous networks (HetNets). In the cell-edge area of a macrocell, the coverage area of a sleeping small-cell will be covered by a range of expanded small-cells nearby. In contrast, in areas close to the macrocell, user equipment (UE) associated with a sleeping small cell will be distributed to the macrocell. Furthermore, the enhanced inter-cell interference coordination (eICIC) technique is used to support range-expanded small cells to avoid Quality of Service (QoS) degradation. Under both hexagonal and stochastic geometry based models, it is demonstrated that the proposed sleeping mechanism significantly reduces the energy consumption of the network compared with the conventional methods while guaranteeing the QoS requirements. Small cells are currently connected to limited backhaul to reduce the deployment and operational costs. In Chapter 4, an optimisation scheme is proposed for small cells to utilise the bandwidth of macrocells as wireless backhaul. I provide the numerical analysis of the performance of both the targeted small cell and the whole network. In Chapter 5, the mobility management (MM) of heterogeneous and LTE-LAA networks are investigated. To avoid Ping-Pong handover (PPHO) and reduce handover failure rate in HetNets, a self-optimisation algorithm is developed to change the handover parameters of a base station automagically. Furthermore, the MM of LTE-LAA networks is analysed. A new handover mechanism is proposed for LTE-LAA networks. Compared with the conventional LTE networks, LTE-LAA networks trigger the handover not only by using UE mobility, but also by the availability of the unlicensed band. A comprehensive analysis of the handover triggering event and handover procedure is presented. Simulation results show that by introducing handover triggered by available unlicensed band, the ratio of handover to unlicensed spectrum has a significant improvement. Therefore, a noticeable enhanced throughput of UEs is achievable by LTE-LAA networks
    corecore