151 research outputs found

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Advanced Transport Protocols for Wireless and Mobile Ad Hoc Networks

    Full text link
    This thesis comprises transport protocols in the following different areas of research: Fast Handover allows mobile IP end-devices to roam between wireless access routers without interruptions while communicating to devices in an infrastructure (e.g., in the Internet). This work optimizes the Fast Handover algorithm and evaluates the performance of the transport protocols UDP and TCP during fast handovers via measurements. The following part of the thesis focuses on vehicular ad hoc networks. The thesis designs and evaluates through simulations a point-to-point transport protocol for vehicular ad hoc networks and an algorithm to facilitate the reliable and efficient distribution of information in a geographically scoped target area. Finally, the thesis evaluates the impact of wireless radio fluctuations on the performance of an Ad Hoc Network. Measurements quantify the wireless radio fluctuations. Based on these results, the thesis develops a simple but realistic radio model that evaluates by means of simulations the impact on the performance of an ad hoc network. As a result, the work provides guidelines for future ad hoc protocol design

    Security-centric analysis and performance investigation of IEEE 802.16 WiMAX

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    End-to-end security in active networks

    Get PDF
    Active network solutions have been proposed to many of the problems caused by the increasing heterogeneity of the Internet. These ystems allow nodes within the network to process data passing through in several ways. Allowing code from various sources to run on routers introduces numerous security concerns that have been addressed by research into safe languages, restricted execution environments, and other related areas. But little attention has been paid to an even more critical question: the effect on end-to-end security of active flow manipulation. This thesis first examines the threat model implicit in active networks. It develops a framework of security protocols in use at various layers of the networking stack, and their utility to multimedia transport and flow processing, and asks if it is reasonable to give active routers access to the plaintext of these flows. After considering the various security problem introduced, such as vulnerability to attacks on intermediaries or coercion, it concludes not. We then ask if active network systems can be built that maintain end-to-end security without seriously degrading the functionality they provide. We describe the design and analysis of three such protocols: a distributed packet filtering system that can be used to adjust multimedia bandwidth requirements and defend against denial-of-service attacks; an efficient composition of link and transport-layer reliability mechanisms that increases the performance of TCP over lossy wireless links; and a distributed watermarking servicethat can efficiently deliver media flows marked with the identity of their recipients. In all three cases, similar functionality is provided to designs that do not maintain end-to-end security. Finally, we reconsider traditional end-to-end arguments in both networking and security, and show that they have continuing importance for Internet design. Our watermarking work adds the concept of splitting trust throughout a network to that model; we suggest further applications of this idea

    Design of interface selection protocols for multi-homed wireless networks

    Get PDF
    The IEEE 802.11/802.16 standards conformant wireless communication stations have multi-homing transmission capability. To achieve greater communication efficiency, multi-homing capable stations use handover mechanism to select appropriate transmission channel according to variations in the channel quality. This thesis presents three internal-linked handover schemes, (1) Interface Selection Protocol (ISP), belonging to Wireless Local Area Network (WLAN)- Worldwide Interoperability for Microwave Access (WiMAX) environment (2) Fast Channel Scanning (FCS) and (3) Traffic Manager (TM), (2) and (3) belonging to WiMAX Environment. The proposed schemes in this thesis use a novel mechanism of providing a reliable communication route. This solution is based on a cross-layer communication framework, where the interface selection module uses various network related parameters from Medium Access Control (MAC) sub-layer/Physical Layer (PHY) across the protocol suite for decision making at the Network layer. The proposed solutions are highly responsive when compared with existing multi-homed schemes; responsiveness is one of the key factors in the design of such protocols. Selected route under these schemes is based on the most up to date link-layer information. Therefore, such a route is not only reliable in terms of route optimization but it also fulfils the application demands in terms of throughput and delay. Design of ISP protocol use probing frames during the route discovery process. The 802.11 mandates the use of different rates for data transmission frames. The ISP-metric can be incorporated into various routing aspects and its applicability is determined by the possibility of provision of MAC dependent parameters that are used to determine the best path metric values. In many cases, higher device density, interference and mobility cause variable medium access delays. It causes creation of ‘unreachable zones’, where destination is marked as unreachable. However, by use of the best path metric, the destination has been made reachable, anytime and anywhere, because of the intelligent use of the probing frames and interface selection algorithm implemented. The IEEE 802.16e introduces several MAC level queues for different access categories, maintaining service requirement within these queues; which imply that frames from a higher priority queue, i.e. video frames, are serviced more frequently than those belonging to lower priority queues. Such an enhancement at the MAC sub-layer introduces uneven queuing delays. Conventional routing protocols are unaware of such MAC specific constraints and as a result, these factors are not considered which result in channel performance degradation. To meet such challenges, the thesis presents FCS and TM schemes for WiMAX. For FCS, Its solution is to improve the mobile WiMAX handover and address the scanning latency. Since minimum scanning time is the most important issue in the handover process. This handover scheme aims to utilize the channel efficiently and apply such a procedure to reduce the time it takes to scan the neighboring access stations. TM uses MAC and physical layer (PHY) specific information in the interface metric and maintains a separate path to destination by applying an alternative interface operation. Simulation tests and comparisons with existing multi-homed protocols and handover schemes demonstrate the effectiveness of incorporating the medium dependent parameters. Moreover, show that suggested schemes, have shown better performance in terms of end-to-end delay and throughput, with efficiency up to 40% in specific test scenarios.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • 

    corecore