2,842 research outputs found

    A Decision-Theoretic Approach to Resource Allocation in Wireless Multimedia Networks

    Full text link
    The allocation of scarce spectral resources to support as many user applications as possible while maintaining reasonable quality of service is a fundamental problem in wireless communication. We argue that the problem is best formulated in terms of decision theory. We propose a scheme that takes decision-theoretic concerns (like preferences) into account and discuss the difficulties and subtleties involved in applying standard techniques from the theory of Markov Decision Processes (MDPs) in constructing an algorithm that is decision-theoretically optimal. As an example of the proposed framework, we construct such an algorithm under some simplifying assumptions. Additionally, we present analysis and simulation results that show that our algorithm meets its design goals. Finally, we investigate how far from optimal one well-known heuristic is. The main contribution of our results is in providing insight and guidance for the design of near-optimal admission-control policies.Comment: To appear, Dial M for Mobility, 200

    MIRAI Architecture for Heterogeneous Network

    Get PDF
    One of the keywords that describe next-generation wireless communications is "seamless." As part of the e-Japan Plan promoted by the Japanese Government, the Multimedia Integrated Network by Radio Access Innovation project has as its goal the development of new technologies to enable seamless integration of various wireless access systems for practical use by 2005. This article describes a heterogeneous network architecture including a common tool, a common platform, and a common access. In particular, software-defined radio technologies are used to develop a multiservice user terminal to access different wireless networks. The common platform for various wireless networks is based on a wireless-supporting IPv6 network. A basic access network, separated from other wireless access networks, is used as a means for wireless system discovery, signaling, and paging. A proof-of-concept experimental demonstration system is available
    corecore