129 research outputs found

    Knowledge engineering techniques for automated planning

    Get PDF
    Formulating knowledge for use in AI Planning engines is currently some-thing of an ad-hoc process, where the skills of knowledge engineers and the tools they use may significantly influence the quality of the resulting planning application. There is little in the way of guidelines or standard procedures, however, for knowledge engineers to use when formulating knowledge into planning domain languages such as PDDL. Also, there is little published research to inform engineers on which method and tools to use in order to effectively engineer a new planning domain model. This is of growing importance, as domain independent planning engines are now being used in a wide range of applications, with the consequence that op-erational problem encodings and domain models have to be developed in a standard language. In particular, at the difficult stage of domain knowledge formulation, changing a statement of the requirements into something for-mal - a PDDL domain model - is still somewhat of an ad hoc process, usually conducted by a team of AI experts using text editors. On the other hand, the use of tools such as itSIMPLE or GIPO, with which experts gen-erate a high level diagrammatic description and automatically generate the domain model, have not yet been proven to be more effective than hand coding. The major contribution of this thesis is the evaluation of knowledge en-gineering tools and techniques involved in the formulation of knowledge. To support this, we introduce and encode a new planning domain called Road Traffic Accidents (RTA), and discuss a set of requirements that we have derived, in consultation with stakeholders and analysis of accident management manuals, for the planning part of the management task. We then use and evaluate three separate strategies for knowledge formulation, encoding domain models from a textual, structural description of require-ments using (i) the traditional method of a PDDL expert and text editor (ii) a leading planning GUI with built in UML modelling tools (iii) an object-based notation inspired by formal methods. We evaluate these three ap-proaches using process and product metrics. The results give insights into the strengths and weaknesses of the approaches, highlight lessons learned regarding knowledge encoding, and point to important lines of research for knowledge engineering for planning. In addition, we discuss a range of state-of-the-art modelling tools to find the types of features that the knowledge engineering tools possess. These features have also been used for evaluating the methods used. We bench-mark our evaluation approach by comparing it with the method used in the previous International Competition for Knowledge Engineering for Plan-ning & Scheduling (ICKEPS). We conclude by providing a set of guide-lines for building future knowledge engineering tools

    Automated Hierarchical, Forward-Chaining Temporal Planner for Planetary Robots Exploring Unknown Environments

    Get PDF
    The transition of mobile robots from a controlled environment towards the real-world represents a major leap in terms of complexity coming primarily from three different factors: partial observability, nondeterminism and dynamic events. To cope with them, robots must achieve some intelligence behaviours to be cost and operationally effective. Two particularly interesting examples of highly complex robotic scenarios are Mars rover missions and the Darpa Robotic Challenge (DRC). In spite of the important differences they present in terms of constraints and requirements, they both have adopted certain level of autonomy to overcome some specific problems. For instance, Mars rovers have been endowed with multiple systems to enable autonomous payload operations and consequently increase science return. In the case of DRC, most teams have autonomous footstep planning or arm trajectory calculation. Even though some specific problems can be addressed with dedicated tools, the general problem remains unsolved: to deploy on-board a reliable reasoning system able to operate robots without human intervention even in complex environments. This is precisely the goal of an automated mission planner. The scientific community has provided plenty of planners able to provide very fast solutions for classical problems, typically characterized by the lack of time and resources representation. Moreover, there are also a handful of applied planners with higher levels of expressiveness at the price of lowest performance. However, a fast, expressive and robust planner has never been used in complex robotic missions. These three properties represent the main drivers for the outcomes of the thesis. To bridge the gap between classical and applied planning, a novel formalism named Hierarchical TimeLine Networks (HTLN) combining Timeline and HTN planning has been proposed. HTLN has been implemented on a mission planner named QuijoteExpress, the first forward-chaining timeline planner to the best of our knowledge. The main idea is to benefit from the great performance of forward-chaining search to resolve temporal problems on the state-space. In addition, QuijoteExpress includes search enhancements such as parallel planning by division of the problem in sub-problems or advanced heuristics management. Regarding expressiveness, the planner incorporates HTN techniques that allow to define hierarchical models and solutions. Finally, plan robustness in uncertain scenarios has been addressed by means of sufficient plans that allow to leave parts of valid plans undefined. To test the planner, a novel lightweight, timeline and ROS-based executive named SanchoExpress has been designed to translate the plans into actions understandable by the different robot subsystems. The entire approach has been tested in two realistic and complementary domains. A cooperative multirover Mars mission and an urban search and rescue mission. The results were extremely positive and opens new promising ways in the field of automated planning applied to robotics

    Technological roadmap on AI planning and scheduling

    Get PDF
    At the beginning of the new century, Information Technologies had become basic and indispensable constituents of the production and preparation processes for all kinds of goods and services and with that are largely influencing both the working and private life of nearly every citizen. This development will continue and even further grow with the continually increasing use of the Internet in production, business, science, education, and everyday societal and private undertaking. Recent years have shown, however, that a dramatic enhancement of software capabilities is required, when aiming to continuously provide advanced and competitive products and services in all these fast developing sectors. It includes the development of intelligent systems – systems that are more autonomous, flexible, and robust than today’s conventional software. Intelligent Planning and Scheduling is a key enabling technology for intelligent systems. It has been developed and matured over the last three decades and has successfully been employed for a variety of applications in commerce, industry, education, medicine, public transport, defense, and government. This document reviews the state-of-the-art in key application and technical areas of Intelligent Planning and Scheduling. It identifies the most important research, development, and technology transfer efforts required in the coming 3 to 10 years and shows the way forward to meet these challenges in the short-, medium- and longer-term future. The roadmap has been developed under the regime of PLANET – the European Network of Excellence in AI Planning. This network, established by the European Commission in 1998, is the co-ordinating framework for research, development, and technology transfer in the field of Intelligent Planning and Scheduling in Europe. A large number of people have contributed to this document including the members of PLANET non- European international experts, and a number of independent expert peer reviewers. All of them are acknowledged in a separate section of this document. Intelligent Planning and Scheduling is a far-reaching technology. Accepting the challenges and progressing along the directions pointed out in this roadmap will enable a new generation of intelligent application systems in a wide variety of industrial, commercial, public, and private sectors
    corecore