55,961 research outputs found

    Handling rich turn-taking in spoken dialogue systems

    Get PDF
    ABSTRACT This paper discusses how to build a system that can engage in a mixed-initiative human-machine spoken dialogue in which system utterances sometimes overlap with user utterances and vice versa. In the method, a module that incrementally understands user utterances and another module that incrementally generates system utterances work in parallel, and the timing of taking and releasing the dialogue initiative is decided according to the understanding of user utterances and the content of the system utterances. This method enables the system to respond when the user holds the dialogue initiative and is speaking, and enables the system to react to the user's barge-ins when it holds the initiative and is speaking. An experimental system called DUG-1 is also presented

    Exploring miscommunication and collaborative behaviour in human-robot interaction

    Get PDF
    This paper presents the first step in designing a speech-enabled robot that is capable of natural management of miscommunication. It describes the methods and results of two WOz studies, in which dyads of naĂŻve participants interacted in a collaborative task. The first WOz study explored human miscommunication management. The second study investigated how shared visual space and monitoring shape the processes of feedback and communication in task-oriented interactions. The results provide insights for the development of human-inspired and robust natural language interfaces in robots

    User Intent Prediction in Information-seeking Conversations

    Full text link
    Conversational assistants are being progressively adopted by the general population. However, they are not capable of handling complicated information-seeking tasks that involve multiple turns of information exchange. Due to the limited communication bandwidth in conversational search, it is important for conversational assistants to accurately detect and predict user intent in information-seeking conversations. In this paper, we investigate two aspects of user intent prediction in an information-seeking setting. First, we extract features based on the content, structural, and sentiment characteristics of a given utterance, and use classic machine learning methods to perform user intent prediction. We then conduct an in-depth feature importance analysis to identify key features in this prediction task. We find that structural features contribute most to the prediction performance. Given this finding, we construct neural classifiers to incorporate context information and achieve better performance without feature engineering. Our findings can provide insights into the important factors and effective methods of user intent prediction in information-seeking conversations.Comment: Accepted to CHIIR 201

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion

    Do (and say) as I say: Linguistic adaptation in human-computer dialogs

    Get PDF
    © Theodora Koulouri, Stanislao Lauria, and Robert D. Macredie. This article has been made available through the Brunel Open Access Publishing Fund.There is strong research evidence showing that people naturally align to each other’s vocabulary, sentence structure, and acoustic features in dialog, yet little is known about how the alignment mechanism operates in the interaction between users and computer systems let alone how it may be exploited to improve the efficiency of the interaction. This article provides an account of lexical alignment in human–computer dialogs, based on empirical data collected in a simulated human–computer interaction scenario. The results indicate that alignment is present, resulting in the gradual reduction and stabilization of the vocabulary-in-use, and that it is also reciprocal. Further, the results suggest that when system and user errors occur, the development of alignment is temporarily disrupted and users tend to introduce novel words to the dialog. The results also indicate that alignment in human–computer interaction may have a strong strategic component and is used as a resource to compensate for less optimal (visually impoverished) interaction conditions. Moreover, lower alignment is associated with less successful interaction, as measured by user perceptions. The article distills the results of the study into design recommendations for human–computer dialog systems and uses them to outline a model of dialog management that supports and exploits alignment through mechanisms for in-use adaptation of the system’s grammar and lexicon
    • 

    corecore