204 research outputs found

    Keyframe-based monocular SLAM: design, survey, and future directions

    Get PDF
    Extensive research in the field of monocular SLAM for the past fifteen years has yielded workable systems that found their way into various applications in robotics and augmented reality. Although filter-based monocular SLAM systems were common at some time, the more efficient keyframe-based solutions are becoming the de facto methodology for building a monocular SLAM system. The objective of this paper is threefold: first, the paper serves as a guideline for people seeking to design their own monocular SLAM according to specific environmental constraints. Second, it presents a survey that covers the various keyframe-based monocular SLAM systems in the literature, detailing the components of their implementation, and critically assessing the specific strategies made in each proposed solution. Third, the paper provides insight into the direction of future research in this field, to address the major limitations still facing monocular SLAM; namely, in the issues of illumination changes, initialization, highly dynamic motion, poorly textured scenes, repetitive textures, map maintenance, and failure recovery

    RD-VIO: Robust Visual-Inertial Odometry for Mobile Augmented Reality in Dynamic Environments

    Full text link
    It is typically challenging for visual or visual-inertial odometry systems to handle the problems of dynamic scenes and pure rotation. In this work, we design a novel visual-inertial odometry (VIO) system called RD-VIO to handle both of these two problems. Firstly, we propose an IMU-PARSAC algorithm which can robustly detect and match keypoints in a two-stage process. In the first state, landmarks are matched with new keypoints using visual and IMU measurements. We collect statistical information from the matching and then guide the intra-keypoint matching in the second stage. Secondly, to handle the problem of pure rotation, we detect the motion type and adapt the deferred-triangulation technique during the data-association process. We make the pure-rotational frames into the special subframes. When solving the visual-inertial bundle adjustment, they provide additional constraints to the pure-rotational motion. We evaluate the proposed VIO system on public datasets. Experiments show the proposed RD-VIO has obvious advantages over other methods in dynamic environments

    On Depth Usage for a Lightened Visual SLAM in Small Environments

    Get PDF
    AbstractHistorically popular, the well established monocular-SLAM is however subject to some limitations. The advent of cheap depth sensors allowed to circumvent some of these. Related methods frequently focus heavily on depth data. However these sensors have their own weaknesses. In some cases it is more appropriate to use both intensity and depth informations equally. We first conduct a few experiments in optimal conditions to determine how to use good quality information in our monocular based SLAM. From this we propose a lightweight SLAM designed for small constrained environments

    A collaborative monocular visual simultaneous localization and mapping solution to generate a semi-dense 3D map.

    Get PDF
    The utilization and generation of indoor maps are critical in accurate indoor tracking. Simultaneous Localization and Mapping (SLAM) is one of the main techniques used for such map generation. In SLAM, an agent generates a map of an unknown environment while approximating its own location in it. The prevalence and afford-ability of cameras encourage the use of Monocular Visual SLAM, where a camera is the only sensing device for the SLAM process. In modern applications, multiple mobile agents may be involved in the generation of indoor maps, thus requiring a distributed computational framework. Each agent generates its own local map, which can then be combined with those of other agents into a map covering a larger area. In doing so, they cover a given environment faster than a single agent. Furthermore, they can interact with each other in the same environment, making this framework more practical, especially for collaborative applications such as augmented reality. One of the main challenges of collaborative SLAM is identifying overlapping maps, especially when the relative starting positions of the agents are unknown. We propose a system comprised of multiple monocular agents with unknown relative starting positions to generate a semi-dense global map of the environment

    Real-Time Accurate Visual SLAM with Place Recognition

    Get PDF
    El problema de localización y construcción simultánea de mapas (del inglés Simultaneous Localization and Mapping, abreviado SLAM) consiste en localizar un sensor en un mapa que se construye en línea. La tecnología de SLAM hace posible la localización de un robot en un entorno desconocido para él, procesando la información de sus sensores de a bordo y por tanto sin depender de infraestructuras externas. Un mapa permite localizarse en todo momento sin acumular deriva, a diferencia de una odometría donde se integran movimientos incrementales. Este tipo de tecnología es crítica para la navegación de robots de servicio y vehículos autónomos, o para la localización del usuario en aplicaciones de realidad aumentada o virtual. La principal contribución de esta tesis es ORB-SLAM, un sistema de SLAM monocular basado en características que trabaja en tiempo real en ambientes pequeños y grandes, de interior y exterior. El sistema es robusto a elementos dinámicos en la escena, permite cerrar bucles y relocalizar la cámara incluso si el punto de vista ha cambiado significativamente, e incluye un método de inicialización completamente automático. ORB-SLAM es actualmente la solución más completa, precisa y fiable de SLAM monocular empleando una cámara como único sensor. El sistema, estando basado en características y ajuste de haces, ha demostrado una precisión y robustez sin precedentes en secuencias públicas estándar.Adicionalmente se ha extendido ORB-SLAM para reconstruir el entorno de forma semi-densa. Nuestra solución desacopla la reconstrucción semi-densa de la estimación de la trayectoria de la cámara, lo que resulta en un sistema que combina la precisión y robustez del SLAM basado en características con las reconstrucciones más completas de los métodos directos. Además se ha extendido la solución monocular para aprovechar la información de cámaras estéreo, RGB-D y sensores inerciales, obteniendo precisiones superiores a otras soluciones del estado del arte. Con el fin de contribuir a la comunidad científica, hemos hecho libre el código de una implementación de nuestra solución de SLAM para cámaras monoculares, estéreo y RGB-D, siendo la primera solución de código libre capaz de funcionar con estos tres tipos de cámara. Bibliografía:R. Mur-Artal and J. D. Tardós.Fast Relocalisation and Loop Closing in Keyframe-Based SLAM.IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China, June 2014.R. Mur-Artal and J. D. Tardós.ORB-SLAM: Tracking and Mapping Recognizable Features.RSS Workshop on Multi VIew Geometry in RObotics (MVIGRO). Berkeley, USA, July 2014. R. Mur-Artal and J. D. Tardós.Probabilistic Semi-Dense Mapping from Highly Accurate Feature-Based Monocular SLAM.Robotics: Science and Systems (RSS). Rome, Italy, July 2015.R. Mur-Artal, J. M. M. Montiel and J. D. Tardós.ORB-SLAM: A Versatile and Accurate Monocular SLAM System.IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147-1163, October 2015.(2015 IEEE Transactions on Robotics Best Paper Award).R. Mur-Artal, and J. D. Tardós.Visual-Inertial Monocular SLAM with Map Reuse.IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 796-803, April 2017. (to be presented at ICRA 17).R.Mur-Artal, and J. D. Tardós. ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras.ArXiv preprint arXiv:1610.06475, 2016. (under Review).<br /
    corecore