237 research outputs found

    Bandwidth Allocation in Tactical Data Links via Mechanism Design

    Get PDF
    AbstractOur research focusses on improving the quality and accuracy of the common operating picture of a tactical scenario through the efficient allocation of bandwidth in the tactical data networks among self-interested actors, who may resort to strategic behaviour dictated by self-interest. We propose a two-stage bandwidth allocation mechanism based on modified strictly-proper scoring rules, whereby multiple agents can provide track data estimates of limited precisions and the centre does not have to rely on knowledge of the true state of the world when calculating payments. In particular, our work emphasizes the importance of applying robust optimization techniques to deal with the data uncertainty in the operating environment. We apply our robust optimization – based scoring rules mechanism to an agent-based model framework of the tactical defence scenario, and analyse the results obtained

    A Mechanism Design Approach to Bandwidth Allocation in Tactical Data Networks

    Get PDF
    The defense sector is undergoing a phase of rapid technological advancement, in the pursuit of its goal of information superiority. This goal depends on a large network of complex interconnected systems - sensors, weapons, soldiers - linked through a maze of heterogeneous networks. The sheer scale and size of these networks prompt behaviors that go beyond conglomerations of systems or `system-of-systems\u27. The lack of a central locus and disjointed, competing interests among large clusters of systems makes this characteristic of an Ultra Large Scale (ULS) system. These traits of ULS systems challenge and undermine the fundamental assumptions of today\u27s software and system engineering approaches. In the absence of a centralized controller it is likely that system users may behave opportunistically to meet their local mission requirements, rather than the objectives of the system as a whole. In these settings, methods and tools based on economics and game theory (like Mechanism Design) are likely to play an important role in achieving globally optimal behavior, when the participants behave selfishly. Against this background, this thesis explores the potential of using computational mechanisms to govern the behavior of ultra-large-scale systems and achieve an optimal allocation of constrained computational resources Our research focusses on improving the quality and accuracy of the common operating picture through the efficient allocation of bandwidth in tactical data networks among self-interested actors, who may resort to strategic behavior dictated by self-interest. This research problem presents the kind of challenges we anticipate when we have to deal with ULS systems and, by addressing this problem, we hope to develop a methodology which will be applicable for ULS system of the future. We build upon the previous works which investigate the application of auction-based mechanism design to dynamic, performance-critical and resource-constrained systems of interest to the defense community. In this thesis, we consider a scenario where a number of military platforms have been tasked with the goal of detecting and tracking targets. The sensors onboard a military platform have a partial and inaccurate view of the operating picture and need to make use of data transmitted from neighboring sensors in order to improve the accuracy of their own measurements. The communication takes place over tactical data networks with scarce bandwidth. The problem is compounded by the possibility that the local goals of military platforms might not be aligned with the global system goal. Such a scenario might occur in multi-flag, multi-platform military exercises, where the military commanders of each platform are more concerned with the well-being of their own platform over others. Therefore there is a need to design a mechanism that efficiently allocates the flow of data within the network to ensure that the resulting global performance maximizes the information gain of the entire system, despite the self-interested actions of the individual actors. We propose a two-stage mechanism based on modified strictly-proper scoring rules, with unknown costs, whereby multiple sensor platforms can provide estimates of limited precisions and the center does not have to rely on knowledge of the actual outcome when calculating payments. In particular, our work emphasizes the importance of applying robust optimization techniques to deal with the uncertainty in the operating environment. We apply our robust optimization - based scoring rules algorithm to an agent-based model framework of the combat tactical data network, and analyze the results obtained. Through the work we hope to demonstrate how mechanism design, perched at the intersection of game theory and microeconomics, is aptly suited to address one set of challenges of the ULS system paradigm - challenges not amenable to traditional system engineering approaches

    Exploring the limits of incentive compatibility and allocative efficiency in complex economic environments

    Get PDF
    In this dissertation auction formats are developed and discussed that focus on three specific economic environments. Regarding the impossibility results from mechanism design, the main task for the implementation of auction designs is to balance allocative efficiency and incentive compatibility – the main characteristics a mechanism should provide. Therefore, the dissertation investigates the limits of conceivable relaxations of allocative efficiency and incentive compatibility for complex settings such as double auctions, interdependent-valuation environments and electricity market designs. The overall aim is to carefully weigh up the advantages and disadvantages for either relaxing allocative efficiency or respectively incentive compatibility.:Preface … 7 1. Introduction … 8 1.1. Applications of auction design … 8 1.2. Optimal use of information in allocation processes … 12 1.3. Modeling non-cooperative situations … 14 1.4. Motivation for the dissertation … 16 2. An Incentive Compatible Double Auction for Multi-Unit Markets with Heterogeneous Goods … 21 2.1. Introduction into double auctions … 21 2.2. Setting of a multi-unit market with heterogeneous goods … 25 2.3. Concept of the Incentive Compatible Double Auction (ICDA) … 29 2.4. Definition of the allocation rule … 31 2.5. Creation of the price vector and the trading bundles … 37 2.6. Characteristics of the Incentive Compatible Double Auction (ICDA) … 40 2.7. Discussion of the properties of the Incentive Compatible Double Auction (ICDA) … 43 3. An Alternating-Price Auction for Interdependent-Valuation Environments … 46 3.1. Introduction into ex-post efficient auction design … 46 3.2. Setting of an interdependent-valuation environment … 50 3.3. Concept of the Alternating-Price Auction (APA) … 54 3.4. Characteristics of the Alternating-Price Auction (APA) 62 3.5. Discussion of the properties of the Alternating-Price Auction (APA) … 64 4. Facilitating Short-Term and Long-Term Efficiency with an Integrated Electricity Market Design … 66 4.1. Introduction into electricity market designs … 66 4.2. Setting of an electricity market … 72 4.3. Concept of the Integrated Electricity Market Design (IEMD) … 78 4.4. Characteristics of the Integrated Electricity Market Design (IEMD) … 88 4.5. Discussion of the properties of the Integrated Electricity Market Design (IEMD) … 91 5. Conclusion ... 94 Reference List … 9

    Mechanism design for eliciting probabilistic estimates from multiple suppliers with unknown costs and limited precision

    No full text
    This paper reports on the design of a novel two-stage mechanism, based on strictly proper scoring rules, that allows a centre to acquire a costly probabilistic estimate of some unknown parameter, by eliciting and fusing estimates from multiple suppliers. Each of these suppliers is capable of producing a probabilistic estimate of any precision, up to a privately known maximum, and by fusing several low precision estimates together the centre is able to obtain a single estimate with a specified minimum precision. Specifically, in the mechanism's first stage M from N agents are pre-selected by eliciting their privately known costs. In the second stage, these M agents are sequentially approached in a random order and their private maximum precision is elicited. A payment rule, based on a strictly proper scoring rule, then incentivises them to make and truthfully report an estimate of this maximum precision, which the centre fuses with others until it achieves its specified precision. We formally prove that the mechanism is incentive compatible regarding the costs, maximum precisions and estimates, and that it is individually rational. We present empirical results showing that our mechanism describes a family of possible ways to perform the pre-selection in the first stage, and formally prove that there is one that dominates all others

    Mechanism design for eliciting probabilistic estimates from multiple suppliers with unknown costs and limited precision

    No full text
    This paper reports on the design of a novel two-stage mechanism, based on strictly proper scoring rules, that allows a centre to acquire a costly probabilistic estimate of some unknown parameter, by eliciting and fusing estimates from multiple suppliers. Each of these suppliers is capable of producing a probabilistic estimate of any precision, up to a privately known maximum, and by fusing several low precision estimates together the centre is able to obtain a single estimate with a specified minimum precision. Specifically, in the mechanism's first stage M from N agents are pre-selected by eliciting their privately known costs. In the second stage, these M agents are sequentially approached in a random order and their private maximum precision is elicited. A payment rule, based on a strictly proper scoring rule, then incentivises them to make and truthfully report an estimate of this maximum precision, which the centre fuses with others until it achieves its specified precision. We formally prove that the mechanism is incentive compatible regarding the costs, maximum precisions and estimates, and that it is individually rational. We present empirical results showing that our mechanism describes a family of possible ways to perform the pre-selection in the first stage, and formally prove that there is one that dominates all others

    Combinatorial exchange models for a user-driven air traffic flow management in Europe

    Get PDF
    2008/2009Air Traffic Flow Management (ATFM) is the service responsible to guarantee that the available capacity of the air transportation system is efficiently used and never exceeded. It guarantees safety of air transportation by adopting a series of measures which range from strategic long-term ones to the imposition of ground delays to flights at a tactical level. These ATFM delays are imposed to individual flights at the departure airport prior to their take-off, since it is safer and less costly to anticipate on the ground any delay predicted somewhere in the system. They are assigned by a central authority according to a First-Planned-First-Served principle, without taking into account individual Airlines' preferences. This criteria of assignment can cause an aggregated cost of delay experienced by users, higher than the minimal one, due to the fact that the cost of delay is a non-linear function of the duration and it depends on many variables such as the type of aircraft, the specific origin-destination pair, ecc. This thesis tackles the issue of formalizing and analyzing alternative models for the assignment of ATFM resources which take into account individual airlines preferences. In particular mathematical programming models are analyzed, that extend the concept of ATFM slot currently adopted to the one of Target Window, as proposed in the CATS European project. Such a concept is in line with the SESAR program, recently adopted in Europe to develop the new generation system of Air Traffic Management, which imposes a direct involvement of Airspace users whenever external constraints need to be enforced that modify their original requests. The first Chapter provides a general introduction to the context of Air Traffic Management and Air Traffic Control. In the second Chapter the principles, methods and performances of the ATFM system are described according to the current situation as well as to the SESAR target concept. The problem of optimally assign ATFM resources is then described mathematically and then analyzed to uncover two fundamental structures that determine its tractability: one corresponds to the case in which there is a unique capacity constrained resource while in the second there is an unrestricted number of constrained resources. In Chapter three a number of properties are proved that give insight into the applicability of different mechanisms for a central calculation of the optimal solution by the ATFM authority. Since such mechanisms involve cost minimization for several agents they are formulated as exchanges, i.e. particular types of auctions in which each participant may buy and/or sell several indivisible goods. The last part of the thesis included in Chapter four deals with the design of iterative exchange mechanisms, whose application in real world presents several advantages with respect to centralized models, from the distribution of computational complexity among participants to the preservation of disclosure of private information by Aircraft Operators. In this case an optimal model based on the Lagrangian relaxation of the separable central problem is first formulated and analyzed. To overcome practical issues possibly deriving from its application in real operations, an heuristic iterative Market-based mechanism is finally formalized. This algorithm exploits some of the underlying characteristics specific to the problem to derive near-optimal solutions in an acceptable time. Computational results are obtained by simulating its implementation on real traffic data and they show that considerable cost savings are possible with respect to a First-Planned-First-Served central allocation. The contribute of this thesis is twofold. The first is to provide a mathematical description, modeling and analysis of the ATFM resource exchange problem faced by Airspace users when network capacity needs to be rationed among them. The second consists in the methodological innovation represented by the formulation of the Market Mechanism which is compliant with several requirements represented by legislative and practical constraints and whose simulation provided encouraging results.XXII Cicl

    To boldly go:an occam-π mission to engineer emergence

    Get PDF
    Future systems will be too complex to design and implement explicitly. Instead, we will have to learn to engineer complex behaviours indirectly: through the discovery and application of local rules of behaviour, applied to simple process components, from which desired behaviours predictably emerge through dynamic interactions between massive numbers of instances. This paper describes a process-oriented architecture for fine-grained concurrent systems that enables experiments with such indirect engineering. Examples are presented showing the differing complex behaviours that can arise from minor (non-linear) adjustments to low-level parameters, the difficulties in suppressing the emergence of unwanted (bad) behaviour, the unexpected relationships between apparently unrelated physical phenomena (shown up by their separate emergence from the same primordial process swamp) and the ability to explore and engineer completely new physics (such as force fields) by their emergence from low-level process interactions whose mechanisms can only be imagined, but not built, at the current time

    Annual Report 2014

    Get PDF
    This report highlights salient features and activities across the spectrum of NPS research activities conducted on behalf of both Navy and Marine Corps topic sponsors during the 2014 fiscal year. Each of the 90 research projects’ executive summary included herein outlines key results. While most of the summaries detail final results, some projects have multi-year project lengths and, therefore, progress to date is reported
    corecore