2,913 research outputs found

    LEARNFCA: A FUZZY FCA AND PROBABILITY BASED APPROACH FOR LEARNING AND CLASSIFICATION

    Get PDF
    Formal concept analysis(FCA) is a mathematical theory based on lattice and order theory used for data analysis and knowledge representation. Over the past several years, many of its extensions have been proposed and applied in several domains including data mining, machine learning, knowledge management, semantic web, software development, chemistry ,biology, medicine, data analytics, biology and ontology engineering. This thesis reviews the state-of-the-art of theory of Formal Concept Analysis(FCA) and its various extensions that have been developed and well-studied in the past several years. We discuss their historical roots, reproduce the original definitions and derivations with illustrative examples. Further, we provide a literature review of it’s applications and various approaches adopted by researchers in the areas of dataanalysis, knowledge management with emphasis to data-learning and classification problems. We propose LearnFCA, a novel approach based on FuzzyFCA and probability theory for learning and classification problems. LearnFCA uses an enhanced version of FuzzyLattice which has been developed to store class labels and probability vectors and has the capability to be used for classifying instances with encoded and unlabelled features. We evaluate LearnFCA on encodings from three datasets - mnist, omniglot and cancer images with interesting results and varying degrees of success. Adviser: Jitender Deogu

    LearnFCA: A Fuzzy FCA and Probability Based Approach for Learning and Classification

    Get PDF
    Formal concept analysis(FCA) is a mathematical theory based on lattice and order theory used for data analysis and knowledge representation. Over the past several years, many of its extensions have been proposed and applied in several domains including data mining, machine learning, knowledge management, semantic web, software development, chemistry ,biology, medicine, data analytics, biology and ontology engineering. This thesis reviews the state-of-the-art of theory of Formal Concept Analysis(FCA) and its various extensions that have been developed and well-studied in the past several years. We discuss their historical roots, reproduce the original definitions and derivations with illustrative examples. Further, we provide a literature review of it’s applications and various approaches adopted by researchers in the areas of dataanalysis, knowledge management with emphasis to data-learning and classification problems. We propose LearnFCA, a novel approach based on FuzzyFCA and probability theory for learning and classification problems. LearnFCA uses an enhanced version of FuzzyLattice which has been developed to store class labels and probability vectors and has the capability to be used for classifying instances with encoded and unlabelled features. We evaluate LearnFCA on encodings from three datasets - mnist, omniglot and cancer images with interesting results and varying degrees of success. Adviser: Dr Jitender Deogu

    Semantic enrichment of knowledge sources supported by domain ontologies

    Get PDF
    This thesis introduces a novel conceptual framework to support the creation of knowledge representations based on enriched Semantic Vectors, using the classical vector space model approach extended with ontological support. One of the primary research challenges addressed here relates to the process of formalization and representation of document contents, where most existing approaches are limited and only take into account the explicit, word-based information in the document. This research explores how traditional knowledge representations can be enriched through incorporation of implicit information derived from the complex relationships (semantic associations) modelled by domain ontologies with the addition of information presented in documents. The relevant achievements pursued by this thesis are the following: (i) conceptualization of a model that enables the semantic enrichment of knowledge sources supported by domain experts; (ii) development of a method for extending the traditional vector space, using domain ontologies; (iii) development of a method to support ontology learning, based on the discovery of new ontological relations expressed in non-structured information sources; (iv) development of a process to evaluate the semantic enrichment; (v) implementation of a proof-of-concept, named SENSE (Semantic Enrichment kNowledge SourcEs), which enables to validate the ideas established under the scope of this thesis; (vi) publication of several scientific articles and the support to 4 master dissertations carried out by the department of Electrical and Computer Engineering from FCT/UNL. It is worth mentioning that the work developed under the semantic referential covered by this thesis has reused relevant achievements within the scope of research European projects, in order to address approaches which are considered scientifically sound and coherent and avoid “reinventing the wheel”.European research projects - CoSpaces (IST-5-034245), CRESCENDO (FP7-234344) and MobiS (FP7-318452

    A Uniform Mathematical Representation of Logic and Computation.

    Get PDF
    The current models of computation share varying levels of correspondence with actual implementation schemes. They can be arranged in a hierarchical structure depending upon their level of abstraction. In classical computing, the circuit model shares closest correspondence with physical implementation, followed by finite automata techniques. The highest level in the abstraction hierarchy is that of the theory of computation.Likewise, there exist computing paradigms based upon a different set of defining principles. The classical paradigm involves computing as has been applied traditionally, and is characterized by Boolean circuits that are irreversible in nature. The reversible paradigm requires invertible primitives in order to perform computation. The paradigm of quantum computing applies the theory of quantum mechanics to perform computational tasks.Our analysis concludes that descriptions at lowest level in the abstraction hierarchy should be uniform across the three paradigms, but the same is not true in case of current descriptions. We propose a mathematical representation of logic and computation that successfully explains computing models in all three paradigms, while making a seamless transition to higher levels of the abstraction hierarchy. This representation is based upon the theory of linear spaces and, hence, is referred to as the linear representation. The representation is first developed in the classical context, followed by an extension to the reversible paradigm by exploiting the well-developed theory on invertible mappings. The quantum paradigm is reconciled with this representation through correspondence that unitary operators share with the proposed linear representation. In this manner, the representation is shown to account for all three paradigms. The correspondence shared with finite automata models is also shown to hold implicitly during the development of this representation. Most importantly, the linear representation accounts for the Hamiltonians that define the dynamics of a computational process, thereby resolving the correspondence shared with underlying physical principles.The consistency of the linear representation is checked against a current existing application in VLSI CAD that exploits the linearity of logic functions for symbolic representation of circuits. Some possible applications and applicability of the linear representation to some open problems are also discussed

    Computing Competencies for Undergraduate Data Science Curricula: ACM Data Science Task Force

    Get PDF
    At the August 2017 ACM Education Council meeting, a task force was formed to explore a process to add to the broad, interdisciplinary conversation on data science, with an articulation of the role of computing discipline-specific contributions to this emerging field. Specifically, the task force would seek to define what the computing/computational contributions are to this new field, and provide guidance on computing-specific competencies in data science for departments offering such programs of study at the undergraduate level. There are many stakeholders in the discussion of data science – these include colleges and universities that (hope to) offer data science programs, employers who hope to hire a workforce with knowledge and experience in data science, as well as individuals and professional societies representing the fields of computing, statistics, machine learning, computational biology, computational social sciences, digital humanities, and others. There is a shared desire to form a broad interdisciplinary definition of data science and to develop curriculum guidance for degree programs in data science. This volume builds upon the important work of other groups who have published guidelines for data science education. There is a need to acknowledge the definition and description of the individual contributions to this interdisciplinary field. For instance, those interested in the business context for these concepts generally use the term “analytics”; in some cases, the abbreviation DSA appears, meaning Data Science and Analytics. This volume is the third draft articulation of computing-focused competencies for data science. It recognizes the inherent interdisciplinarity of data science and situates computing-specific competencies within the broader interdisciplinary space

    Learning understandable classifier models.

    Get PDF
    The topic of this dissertation is the automation of the process of extracting understandable patterns and rules from data. An unprecedented amount of data is available to anyone with a computer connected to the Internet. The disciplines of Data Mining and Machine Learning have emerged over the last two decades to face this challenge. This has led to the development of many tools and methods. These tools often produce models that make very accurate predictions about previously unseen data. However, models built by the most accurate methods are usually hard to understand or interpret by humans. In consequence, they deliver only decisions, and are short of any explanations. Hence they do not directly lead to the acquisition of new knowledge. This dissertation contributes to bridging the gap between the accurate opaque models and those less accurate but more transparent for humans. This dissertation first defines the problem of learning from data. It surveys the state-of-the-art methods for supervised learning of both understandable and opaque models from data, as well as unsupervised methods that detect features present in the data. It describes popular methods of rule extraction from unintelligible models which rewrite them into an understandable form. Limitations of rule extraction are described. A novel definition of understandability which ties computational complexity and learning is provided to show that rule extraction is an NP-hard problem. Next, a discussion whether one can expect that even an accurate classifier has learned new knowledge. The survey ends with a presentation of two approaches to building of understandable classifiers. On the one hand, understandable models must be able to accurately describe relations in the data. On the other hand, often a description of the output of a system in terms of its input requires the introduction of intermediate concepts, called features. Therefore it is crucial to develop methods that describe the data with understandable features and are able to use those features to present the relation that describes the data. Novel contributions of this thesis follow the survey. Two families of rule extraction algorithms are considered. First, a method that can work with any opaque classifier is introduced. Artificial training patterns are generated in a mathematically sound way and used to train more accurate understandable models. Subsequently, two novel algorithms that require that the opaque model is a Neural Network are presented. They rely on access to the network\u27s weights and biases to induce rules encoded as Decision Diagrams. Finally, the topic of feature extraction is considered. The impact on imposing non-negativity constraints on the weights of a neural network is considered. It is proved that a three layer network with non-negative weights can shatter any given set of points and experiments are conducted to assess the accuracy and interpretability of such networks. Then, a novel path-following algorithm that finds robust sparse encodings of data is presented. In summary, this dissertation contributes to improved understandability of classifiers in several tangible and original ways. It introduces three distinct aspects of achieving this goal: infusion of additional patterns from the underlying pattern distribution into rule learners, the derivation of decision diagrams from neural networks, and achieving sparse coding with neural networks with non-negative weights
    • …
    corecore