14,596 research outputs found

    Indexing the Event Calculus with Kd-trees to Monitor Diabetes

    Get PDF
    Personal Health Systems (PHS) are mobile solutions tailored to monitoring patients affected by chronic non communicable diseases. A patient affected by a chronic disease can generate large amounts of events. Type 1 Diabetic patients generate several glucose events per day, ranging from at least 6 events per day (under normal monitoring) to 288 per day when wearing a continuous glucose monitor (CGM) that samples the blood every 5 minutes for several days. This is a large number of events to monitor for medical doctors, in particular when considering that they may have to take decisions concerning adjusting the treatment, which may impact the life of the patients for a long time. Given the need to analyse such a large stream of data, doctors need a simple approach towards physiological time series that allows them to promptly transfer their knowledge into queries to identify interesting patterns in the data. Achieving this with current technology is not an easy task, as on one hand it cannot be expected that medical doctors have the technical knowledge to query databases and on the other hand these time series include thousands of events, which requires to re-think the way data is indexed. In order to tackle the knowledge representation and efficiency problem, this contribution presents the kd-tree cached event calculus (\ceckd) an event calculus extension for knowledge engineering of temporal rules capable to handle many thousands events produced by a diabetic patient. \ceckd\ is built as a support to a graphical interface to represent monitoring rules for diabetes type 1. In addition, the paper evaluates the \ceckd\ with respect to the cached event calculus (CEC) to show how indexing events using kd-trees improves scalability with respect to the current state of the art.Comment: 24 pages, preliminary results calculated on an implementation of CECKD, precursor to Journal paper being submitted in 2017, with further indexing and results possibilities, put here for reference and chronological purposes to remember how the idea evolve

    Use-cases on evolution

    Get PDF
    This report presents a set of use cases for evolution and reactivity for data in the Web and Semantic Web. This set is organized around three different case study scenarios, each of them is related to one of the three different areas of application within Rewerse. Namely, the scenarios are: ā€œThe Rewerse Information System and Portalā€, closely related to the work of A3 ā€“ Personalised Information Systems; ā€œOrganizing Travelsā€, that may be related to the work of A1 ā€“ Events, Time, and Locations; ā€œUpdates and evolution in bioinformatics data sourcesā€ related to the work of A2 ā€“ Towards a Bioinformatics Web

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web

    Efficient Management of Short-Lived Data

    Full text link
    Motivated by the increasing prominence of loosely-coupled systems, such as mobile and sensor networks, which are characterised by intermittent connectivity and volatile data, we study the tagging of data with so-called expiration times. More specifically, when data are inserted into a database, they may be tagged with time values indicating when they expire, i.e., when they are regarded as stale or invalid and thus are no longer considered part of the database. In a number of applications, expiration times are known and can be assigned at insertion time. We present data structures and algorithms for online management of data tagged with expiration times. The algorithms are based on fully functional, persistent treaps, which are a combination of binary search trees with respect to a primary attribute and heaps with respect to a secondary attribute. The primary attribute implements primary keys, and the secondary attribute stores expiration times in a minimum heap, thus keeping a priority queue of tuples to expire. A detailed and comprehensive experimental study demonstrates the well-behavedness and scalability of the approach as well as its efficiency with respect to a number of competitors.Comment: switched to TimeCenter latex styl

    Comparing Map Calculus and Map Algebra in Dynamic GIS

    Get PDF

    Reactive Rules for Emergency Management

    Get PDF
    The goal of the following survey on Event-Condition-Action (ECA) Rules is to come to a common understanding and intuition on this topic within EMILI. Thus it does not give an academic overview on Event-Condition-Action Rules which would be valuable for computer scientists only. Instead the survey tries to introduce Event-Condition-Action Rules and their use for emergency management based on real-life examples from the use-cases identified in Deliverable 3.1. In this way we hope to address both, computer scientists and security experts, by showing how the Event-Condition-Action Rule technology can help to solve security issues in emergency management. The survey incorporates information from other work packages, particularly from Deliverable D3.1 and its Annexes, D4.1, D2.1 and D6.2 wherever possible
    • ā€¦
    corecore