271,988 research outputs found

    The IFMIF-DONES remote handling control system: Experimental setup for OPC UA integration

    Get PDF
    The devices used to carry out Remote Handling (RH) manipulation tasks in radiation environments address requirements that are significantly different from common robotic and industrial systems due to the lack of repetitive operations and incompletely specified control actions. This imposes the need of control with human-in -the-loop operations. These RH systems are used on facilities such PRIDE, CERN, ESS, ITER or IFMIF-DONES, the reference used for this work. For the RH system is crucial to provide high availability, robustness against radiation, haptic devices for teleoperation and dexterous operation, and smooth coordination and integration with the centralized control room. To achieve this purpose is necessary to find the best approach towards a standard control framework capable of providing a standard set of functionalities, tools, interfaces, communications, and data formats to the different types of mechatronic devices that are usually considered for Remote Handling tasks. This previous phase of homogenization is not considered in most facilities, which leads towards a costly integration process during the commissioning phase of the facility.In this paper, an approach to the IFMIF-DONES RH Control framework with strong standard support based on protocols such as OPC UA has been described and validated through an experimental setup. This test bench includes a set of physical devices (PLC, conveyor belt and computers) and a set of OPC UA compatible software tools, configured and operable from any node of the University of Granada network. This proof-of-concept mockup provides flexibility to modify the dimension and complexity of the setup by using new virtual or physical devices connected to a unique backbone. Besides, it will be used to test different aspects such as control schemes, failure injection, network modeling, predictive maintenance studies, operator training on simulated/ real scenarios, usability or ergonomics of the user interfaces before the deployment. In this contribution, the results are described and illustrated using a conveyor belt set-up, a small but representative reference used to validate the RH control concepts here proposed.European Union via the Euratom Research and Training Programme 101052200 - EUROfusio

    Shipboard Crisis Management: A Case Study.

    Get PDF
    The loss of the "Green Lily" in 1997 is used as a case study to highlight the characteristics of escalating crises. As in similar safety critical industries, these situations are unpredictable events that may require co-ordinated but flexible and creative responses from individuals and teams working in stressful conditions. Fundamental skill requirements for crisis management are situational awareness and decision making. This paper reviews the naturalistic decision making (NDM) model for insights into the nature of these skills and considers the optimal training regimes to cultivate them. The paper concludes with a review of the issues regarding the assessment of crisis management skills and current research into the determination of behavioural markers for measuring competence

    Orbital operation for large automated satellites

    Get PDF
    Orbital operations concepts for the shuttle launched Large Automated Satellites (LAS) are discussed. It includes the orbital operations elements and the major options for accomplishing each element. This study is based on the preliminary payload information available in Level I and II documents and on orbital operations methods used on past programs, both manned and unmanned. It includes a definition of detailed trade studies which need to be performed as satellite design details and organization responsibilities are defined. The major objectives of this study were to define operational methods and requirements for the long duration LAS missions which are effective and primarily economical to implement

    Generic object models and business process (re)design.

    Get PDF
    This paper explores the capacities of generic object-relationship models in the context of business process modeling and business process re-engineering. The presentation is based on a framework for strategic business function typology. It is shown how generic models can be developed for each kind of business function within the typology. Business process re-engineering can be represented by transformations of business models, corresponding to shifts within the typology framework. Although the results of the paper are presented by means of one particular dialect of the object-relationship approach, the results remain valid for all object oriented approaches that make use of objects and relationships. This paper contributes to the further formalisation of business process modeling.Models; Model; Processes;

    Enabling High-Level Application Development for the Internet of Things

    Get PDF
    Application development in the Internet of Things (IoT) is challenging because it involves dealing with a wide range of related issues such as lack of separation of concerns, and lack of high-level of abstractions to address both the large scale and heterogeneity. Moreover, stakeholders involved in the application development have to address issues that can be attributed to different life-cycles phases. when developing applications. First, the application logic has to be analyzed and then separated into a set of distributed tasks for an underlying network. Then, the tasks have to be implemented for the specific hardware. Apart from handling these issues, they have to deal with other aspects of life-cycle such as changes in application requirements and deployed devices. Several approaches have been proposed in the closely related fields of wireless sensor network, ubiquitous and pervasive computing, and software engineering in general to address the above challenges. However, existing approaches only cover limited subsets of the above mentioned challenges when applied to the IoT. This paper proposes an integrated approach for addressing the above mentioned challenges. The main contributions of this paper are: (1) a development methodology that separates IoT application development into different concerns and provides a conceptual framework to develop an application, (2) a development framework that implements the development methodology to support actions of stakeholders. The development framework provides a set of modeling languages to specify each development concern and abstracts the scale and heterogeneity related complexity. It integrates code generation, task-mapping, and linking techniques to provide automation. Code generation supports the application development phase by producing a programming framework that allows stakeholders to focus on the application logic, while our mapping and linking techniques together support the deployment phase by producing device-specific code to result in a distributed system collaboratively hosted by individual devices. Our evaluation based on two realistic scenarios shows that the use of our approach improves the productivity of stakeholders involved in the application development

    Modeling, Simulation and Emulation of Intelligent Domotic Environments

    Get PDF
    Intelligent Domotic Environments are a promising approach, based on semantic models and commercially off-the-shelf domotic technologies, to realize new intelligent buildings, but such complexity requires innovative design methodologies and tools for ensuring correctness. Suitable simulation and emulation approaches and tools must be adopted to allow designers to experiment with their ideas and to incrementally verify designed policies in a scenario where the environment is partly emulated and partly composed of real devices. This paper describes a framework, which exploits UML2.0 state diagrams for automatic generation of device simulators from ontology-based descriptions of domotic environments. The DogSim simulator may simulate a complete building automation system in software, or may be integrated in the Dog Gateway, allowing partial simulation of virtual devices alongside with real devices. Experiments on a real home show that the approach is feasible and can easily address both simulation and emulation requirement

    Understanding safety-critical interactions with a home medical device through Distributed Cognition

    Get PDF
    As healthcare shifts from the hospital to the home, it is becoming increasingly important to understand how patients interact with home medical devices, to inform the safe and patient-friendly design of these devices. Distributed Cognition (DCog) has been a useful theoretical framework for understanding situated interactions in the healthcare domain. However, it has not previously been applied to study interactions with home medical devices. In this study, DCog was applied to understand renal patients’ interactions with Home Hemodialysis Technology (HHT), as an example of a home medical device. Data was gathered through ethnographic observations and interviews with 19 renal patients and interviews with seven professionals. Data was analyzed through the principles summarized in the Distributed Cognition for Teamwork methodology. In this paper we focus on the analysis of system activities, information flows, social structures, physical layouts, and artefacts. By explicitly considering different ways in which cognitive processes are distributed, the DCog approach helped to understand patients’ interaction strategies, and pointed to design opportunities that could improve patients’ experiences of using HHT. The findings highlight the need to design HHT taking into consideration likely scenarios of use in the home and of the broader home context. A setting such as home hemodialysis has the characteristics of a complex and safety-critical socio-technical system, and a DCog approach effectively helps to understand how safety is achieved or compromised in such a system
    • 

    corecore