1,393 research outputs found

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This ļ¬fth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different ļ¬elds of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modiļ¬ed Proportional Conļ¬‚ict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classiļ¬ers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identiļ¬cation of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classiļ¬cation. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classiļ¬cation, and hybrid techniques mixing deep learning with belief functions as well

    On the Utility of Representation Learning Algorithms for Myoelectric Interfacing

    Get PDF
    Electrical activity produced by muscles during voluntary movement is a reflection of the firing patterns of relevant motor neurons and, by extension, the latent motor intent driving the movement. Once transduced via electromyography (EMG) and converted into digital form, this activity can be processed to provide an estimate of the original motor intent and is as such a feasible basis for non-invasive efferent neural interfacing. EMG-based motor intent decoding has so far received the most attention in the field of upper-limb prosthetics, where alternative means of interfacing are scarce and the utility of better control apparent. Whereas myoelectric prostheses have been available since the 1960s, available EMG control interfaces still lag behind the mechanical capabilities of the artificial limbs they are intended to steerā€”a gap at least partially due to limitations in current methods for translating EMG into appropriate motion commands. As the relationship between EMG signals and concurrent effector kinematics is highly non-linear and apparently stochastic, finding ways to accurately extract and combine relevant information from across electrode sites is still an active area of inquiry.This dissertation comprises an introduction and eight papers that explore issues afflicting the status quo of myoelectric decoding and possible solutions, all related through their use of learning algorithms and deep Artificial Neural Network (ANN) models. Paper I presents a Convolutional Neural Network (CNN) for multi-label movement decoding of high-density surface EMG (HD-sEMG) signals. Inspired by the successful use of CNNs in Paper I and the work of others, Paper II presents a method for automatic design of CNN architectures for use in myocontrol. Paper III introduces an ANN architecture with an appertaining training framework from which simultaneous and proportional control emerges. Paper Iv introduce a dataset of HD-sEMG signals for use with learning algorithms. Paper v applies a Recurrent Neural Network (RNN) model to decode finger forces from intramuscular EMG. Paper vI introduces a Transformer model for myoelectric interfacing that do not need additional training data to function with previously unseen users. Paper vII compares the performance of a Long Short-Term Memory (LSTM) network to that of classical pattern recognition algorithms. Lastly, paper vIII describes a framework for synthesizing EMG from multi-articulate gestures intended to reduce training burden

    Systemic Circular Economy Solutions for Fiber Reinforced Composites

    Get PDF
    This open access book provides an overview of the work undertaken within the FiberEUse project, which developed solutions enhancing the profitability of composite recycling and reuse in value-added products, with a cross-sectorial approach. Glass and carbon fiber reinforced polymers, or composites, are increasingly used as structural materials in many manufacturing sectors like transport, constructions and energy due to their better lightweight and corrosion resistance compared to metals. However, composite recycling is still a challenge since no significant added value in the recycling and reprocessing of composites is demonstrated. FiberEUse developed innovative solutions and business models towards sustainable Circular Economy solutions for post-use composite-made products. Three strategies are presented, namely mechanical recycling of short fibers, thermal recycling of long fibers and modular car parts design for sustainable disassembly and remanufacturing. The validation of the FiberEUse approach within eight industrial demonstrators shows the potentials towards new Circular Economy value-chains for composite materials

    Surgical skills modeling in cardiac ablation using deep learning

    Get PDF
    Cardiovascular diseases, a leading global cause of death, can be treated using Minimally Invasive Surgery (MIS) for various heart conditions. Cardiac ablation is an example of MIS, treating heart rhythm disorders like atrial fibrillation and the operation outcomes are highly dependent on the surgeon's skills. This procedure utilizes catheters, flexible endovascular devices inserted into the patient's blood vessels through a small incision. Traditionally, novice surgeons' performance is assessed in the Operating Room (OR) through surgical tasks. Unskilled behavior can lead to longer operations and inferior surgical outcomes. However, an alternative approach can be capturing surgeons' maneuvers and using them as input for an AI model to evaluate their skills outside the OR. To this end, two experimental setups were proposed to study the skills modelling for surgical behaviours. The first setup simulates the ablation procedure using a mechanical system with a synthetic heartbeat mechanism that measures contact forces between the catheter's tip and tissue. The second one simulates the cardiac catheterization procedure for the surgeonā€™s practice and records the user's maneuvers at the same time. The first task involved maintaining the force within a safe range while the tip of the catheter is touching the surface. The second task was passing a catheterā€™s tip through curves and level-intersection on a transparent blood vessel phantom. To evaluate attendees' demonstrations, it is crucial to extract maneuver models for both expert and novice surgeons. Data from participants, including novices and experts, performing the task using the experimental setups, is compiled. Deep recurrent neural networks are employed to extract the model of skills by solving a binary classification problem, distinguishing between expert and novice maneuvers. The results demonstrate the proposed networks' ability to accurately distinguish between novice and expert surgical skills, achieving an accuracy of over 92%

    Green Cities Artificial Intelligence

    Get PDF
    119 pagesIn an era defined by rapid urbanization, the effective planning and management of cities have become paramount to ensure sustainable development, efficient resource allocation, and enhanced quality of life for residents. Traditional methods of urban planning and management are grappling with the complexities and challenges presented by modern cities. Enter Artificial Intelligence (AI), a disruptive technology that holds immense potential to revolutionize the way cities are planned, designed, and operated. The primary aim of this report is to provide an in-depth exploration of the multifaceted role that Artificial Intelligence plays in modern city planning and management. Through a comprehensive analysis of key AI applications, case studies, challenges, and ethical considerations, the report aims to provide resources for urban planners, City staff, and elected officials responsible for community planning and development. These include a model City policy, draft informational public meeting format, AI software and applications, implementation actions, AI timeline, glossary, and research references. This report represents the cumulative efforts of many participants and is sponsored by the City of Salem and Sustainable City Year Program. The Green Cities AI project website is at: https://blogs.uoregon.edu/artificialintelligence/. As cities continue to evolve into complex ecosystems, the integration of Artificial Intelligence stands as a pivotal force in shaping their trajectories. Through this report, we aim to provide a comprehensive understanding of how AI is transforming the way cities are planned, operated, and experienced. By analyzing the tools, applications, and ethical considerations, we hope to equip policymakers, urban planners, and stakeholders with the insights needed to navigate the AI-driven urban landscape effectively and create cities that are not only smart but also sustainable, resilient, and regenerative.This year's SCYP partnership is possible in part due to support from U.S. Senators Ron Wyden and Jeff Merkley, as well as former Congressman Peter DeFazio, who secured federal funding for SCYP through Congressionally Directed Spending. With additional funding from the city of Salem, the partnerships will allow UO students and faculty to study and make recommendations on city-identified projects and issues
    • ā€¦
    corecore