1,564 research outputs found

    A Survey on Thread-Level Speculation Techniques

    Get PDF
    Producción CientíficaThread-Level Speculation (TLS) is a promising technique that allows the parallel execution of sequential code without relying on a prior, compile-time-dependence analysis. In this work, we introduce the technique, present a taxonomy of TLS solutions, and summarize and put into perspective the most relevant advances in this field.MICINN (Spain) and ERDF program of the European Union: HomProg-HetSys project (TIN2014-58876-P), CAPAP-H5 network (TIN2014-53522-REDT), and COST Program Action IC1305: Network for Sustainable Ultrascale Computing (NESUS)

    Mixed Speculative Multithreaded Execution Models

    Get PDF
    Institute for Computing Systems ArchitectureThe current trend toward chip multiprocessor architectures has placed great pressure on programmers and compilers to generate thread-parallel programs. Improved execution performance can no longer be obtained via traditional single-thread instruction level parallelism (ILP), but, instead, via multithreaded execution. One notable technique that facilitates the extraction of parallel threads from sequential applications is thread-level speculation (TLS). This technique allows programmers/compilers to generate threads without checking for inter-thread data and control dependences, which are then transparently enforced by the hardware. Most prior work on TLS has concentrated on thread selection and mechanisms to efficiently support the main TLS operations, such as squashes, data versioning, and commits. This thesis seeks to enhance TLS functionality by combining it with other speculative multithreaded execution models. The main idea is that TLS already requires extensive hardware support, which when slightly augmented can accommodate other speculative multithreaded techniques. Recognizing that for different applications, or even program phases, the application bottlenecks may be different, it is reasonable to assume that the more versatile a system is, the more efficiently it will be able to execute the given program. As mentioned above, generating thread-parallel programs is hard and TLS has been suggested as an execution model that can speculatively exploit thread-level parallelism (TLP) even when thread independence cannot be guaranteed by the programmer/ compiler. Alternatively, the helper threads (HT) execution model has been proposed where subordinate threads are executed in parallel with a main thread in order to improve the execution efficiency (i.e., ILP) of the latter. Yet another execution model, runahead execution (RA), has also been proposed where subordinate versions of the main thread are dynamically created especially to cope with long-latency operations, again with the aim of improving the execution efficiency of the main thread (ILP). Each one of these multithreaded execution models works best for different applications and application phases. We combine these three models into a single execution model and single hardware infrastructure such that the system can dynamically adapt to find the most appropriate multithreaded execution model. More specifically, TLS is favored whenever successful parallel execution of instructions in multiple threads (i.e., TLP) is possible and the system can seamlessly transition at run-time to the other models otherwise. In order to understand the tradeoffs involved, we also develop a performance model that allows one to quantitatively attribute overall performance gains to either TLP or ILP in such combined multithreaded execution model. Experimental results show that our combined execution model achieves speedups of up to 41.2%, with an average of 10.2%, over an existing state-of-the-art TLS system and speedups of up to 35.2%, with an average of 18.3%, over a flavor of runahead execution for a subset of the SPEC2000 Integer benchmark suite. We then investigate how a common ILP-enhancingmicroarchitectural feature, namely branch prediction, interacts with TLS.We show that branch prediction for TLS is even more important than it is for single core machines. Unfortunately, branch prediction for TLS systems is also inherently harder. Code partitioning and re-executions of squashed threads pollute the branch history making it harder for predictors to be accurate. We thus propose to augment the hardware, so as to accommodate Multi-Path (MP) execution within the existing TLS protocol. Under the MP execution model, all paths following a number of hard-to-predict conditional branches are followed. MP execution thus, removes branches that would have been otherwise mispredicted helping in this way the processor to exploit more ILP. We show that with only minimal hardware support, one can combine these two execution models into a unified one, which can achieve far better performance than both TLS and MP execution. Experimental results show that our combied execution model achieves speedups of up to 20.1%, with an average of 8.8%, over an existing state-of-the-art TLS system and speedups of up to 125%, with an average of 29.0%, when compared with multi-path execution for a subset of the SPEC2000 Integer benchmark suite. Finally, Since systems that support speculative multithreading usually treat all threads equally, they are energy-inefficient. This inefficiency stems from the fact that speculation occasionally fails and, thus, power is spent on threads that will have to be discarded. We propose a profitability-based power allocation scheme, where we “steal” power from non-profitable threads and use it to speed up more useful ones. We evaluate our techniques for a state-of-the-art TLS system and show that, with minimalhardware support, we achieve improvements in ED of up to 25.5% with an average of 18.9%, for a subset of the SPEC 2000 Integer benchmark suite

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    Using the Xeon Phi platform to run speculatively-parallelized codes

    Get PDF
    Producción CientíficaIntel Xeon Phi accelerators are one of the newest devices used in the field of parallel computing. However, there are comparatively few studies concerning their performance when using most of the existing parallelization techniques. One of them is thread-level speculation, a technique that optimistically tries to extract parallelism of loops without the need of a compile-time analysis that guarantees that the loop can be executed in parallel. In this article we evaluate the performance delivered by an Intel Xeon Phi coprocessor when using a software, state-of-the-art thread-level speculative parallelization library in the execution of well-known benchmarks. We describe both the internal characteristics of the Xeon Phi platform and the particularities of the thread-level speculation library being used as benchmark. Our results show that, although the Xeon Phi delivers a relatively good speedup in comparison with a shared-memory architecture in terms of scalability, the relatively low computing power of its computational units when specific vectorization and SIMD instructions are not fully exploited makes this first generation of Xeon Phi architectures not competitive (in terms of absolute performance) with respect to conventional multicore systems for the execution of speculatively parallelized code.2018-04-01Castilla-Leon Regional Government (VA172A12-2); MICINN (Spain) and the European Union FEDER (MOGECOPP project TIN2011-25639, HomProg-HetSys project TIN2014-58876-P, CAPAP-H5 network TIN2014-53522-REDT)

    Identifying, Quantifying, Extracting and Enhancing Implicit Parallelism

    Get PDF
    The shift of the microprocessor industry towards multicore architectures has placed a huge burden on the programmers by requiring explicit parallelization for performance. Implicit Parallelization is an alternative that could ease the burden on programmers by parallelizing applications ???under the covers??? while maintaining sequential semantics externally. This thesis develops a novel approach for thinking about parallelism, by casting the problem of parallelization in terms of instruction criticality. Using this approach, parallelism in a program region is readily identified when certain conditions about fetch-criticality are satisfied by the region. The thesis formalizes this approach by developing a criticality-driven model of task-based parallelization. The model can accurately predict the parallelism that would be exposed by potential task choices by capturing a wide set of sources of parallelism as well as costs to parallelization. The criticality-driven model enables the development of two key components for Implicit Parallelization: a task selection policy, and a bottleneck analysis tool. The task selection policy can partition a single-threaded program into tasks that will profitably execute concurrently on a multicore architecture in spite of the costs associated with enforcing data-dependences and with task-related actions. The bottleneck analysis tool gives feedback to the programmers about data-dependences that limit parallelism. In particular, there are several ???accidental dependences??? that can be easily removed with large improvements in parallelism. These tools combine into a systematic methodology for performance tuning in Implicit Parallelization. Finally, armed with the criticality-driven model, the thesis revisits several architectural design decisions, and finds several encouraging ways forward to increase the scope of Implicit Parallelization.unpublishednot peer reviewe
    corecore