3,626 research outputs found

    Requirements and Tools for Variability Management

    Get PDF
    Explicit and software-supported Business Process Management has become the core infrastructure of any medium and large organization that has a need to be efficient and effective. The number of processes of a single organization can be very high, furthermore, they might be very similar, be in need of momentary change, or evolve frequently. If the ad-hoc adaptation and customization of processes is currently the dominant way, it clearly is not the best. In fact, providing tools for supporting the explicit management of variation in processes (due to customization or evolution needs) has a profound impact on the overall life-cycle of processes in organizations. Additionally, with the increasing adoption of Service-Oriented Architectures, the infrastructure to support automatic reconfiguration and adaptation of business process is solid. In this paper, after defining variability in business process management, we consider the requirements for explicit variation handling for (service based) business process systems. eGovernment serves as an illustrative example of reuse. In this case study, all local municipalities need to implement the same general legal process while adapting it to the local business practices and IT infrastructure needs. Finally, an evaluation of existing tools for explicit variability management is provided with respect to the requirements identified.

    Composition and Self-Adaptation of Service-Based Systems with Feature Models

    Get PDF
    The adoption of mechanisms for reusing software in pervasive systems has not yet become standard practice. This is because the use of pre-existing software requires the selection, composition and adaptation of prefabricated software parts, as well as the management of some complex problems such as guaranteeing high levels of efficiency and safety in critical domains. In addition to the wide variety of services, pervasive systems are composed of many networked heterogeneous devices with embedded software. In this work, we promote the safe reuse of services in service-based systems using two complementary technologies, Service-Oriented Architecture and Software Product Lines. In order to do this, we extend both the service discovery and composition processes defined in the DAMASCo framework, which currently does not deal with the service variability that constitutes pervasive systems. We use feature models to represent the variability and to self-adapt the services during the composition in a safe way taking context changes into consideration. We illustrate our proposal with a case study related to the driving domain of an Intelligent Transportation System, handling the context information of the environment.Work partially supported by the projects TIN2008-05932, TIN2008-01942, TIN2012-35669, TIN2012-34840 and CSD2007-0004 funded by Spanish Ministry of Economy and Competitiveness and FEDER; P09-TIC-05231 and P11-TIC-7659 funded by Andalusian Government; and FP7-317731 funded by EU. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Towards a methodology for rigorous development of generic requirements patterns

    No full text
    We present work in progress on a methodology for the engineering, validation and verification of generic requirements using domain engineering and formal methods. The need to develop a generic requirement set for subsequent system instantiation is complicated by the addition of the high levels of verification demanded by safety-critical domains such as avionics. We consider the failure detection and management function for engine control systems as an application domain where product line engineering is useful. The methodology produces a generic requirement set in our, UML based, formal notation, UML-B. The formal verification both of the generic requirement set, and of a particular application, is achieved via translation to the formal specification language, B, using our U2B and ProB tools

    Applying Software Product Lines to Build Autonomic Pervasive Systems

    Full text link
    In this Master Thesis, we have proposed a model-driven Software Product Line (SPL) for developing autonomic pervasive systems. The work focusses on reusing the Variability knowledge from the SPL design to the SPL products. This Variability knowledge enables SPL products to deal with adaptation scenarios (evolution and involution) in an autonomic way.Cetina Englada, C. (2008). Applying Software Product Lines to Build Autonomic Pervasive Systems. http://hdl.handle.net/10251/12447Archivo delegad
    corecore