153 research outputs found

    Model Based Teleoperation to Eliminate Feedback Delay NSF Grant BCS89-01352 Second Report

    Get PDF
    We are conducting research in the area of teleoperation with feedback delay. Delay occurs with earth-based teleoperation in space and with surface-based teleoperation with untethered submersibles when acoustic communication links are involved. The delay in obtaining position and force feedback from remote slave arms makes teleoperation extremely difficult leading to very low productivity. We have combined computer graphics with manipulator programming to provide a solution to the problem. A teleoperator master arm is interfaced to a graphics based simulator of the remote environment. The system is then coupled with a robot manipulator at the remote, delayed site. The operator\u27s actions are monitored to provide both kinesthetic and visual feedback and to generate symbolic motion commands to the remote slave. The slave robot then executes these symbolic commands delayed in time. While much of a task proceeds error free, when an error does occur, the slave system transmits data back to the master environment which is then reset to the error state from which the operator continues the task

    Robotic workcell analysis and object level programming

    Get PDF
    For many years robots have been programmed at manipulator or joint level without any real thought to the implementation of sensing until errors occur during program execution. For the control of complex, or multiple robot workcells, programming must be carried out at a higher level, taking into account the possibility of error occurrence. This requires the integration of decision information based on sensory data.Aspects of robotic workcell control are explored during this work with the object of integrating the results of sensor outputs to facilitate error recovery for the purposes of achieving completely autonomous operation.Network theory is used for the development of analysis techniques based on stochastic data. Object level programming is implemented using Markov chain theory to provide fully sensor integrated robot workcell control

    Model Based Teleoperation to Eliminate Feedback Delay NSF Grant BCS89-01352 First Report

    Get PDF
    We are conducting research in the area of teleoperation with feedback delay. Delay occurs with earth-based teleoperation in space and with surface-based teleoperation with untethered submersibles when acoustic communication links are involved. the delay in obtaining position and force feedback from remote slave arms makes teleoperation extremely difficult. We are proposing a novel combination of graphics and manipulator programming to solve the problem by interfacing a teleoperator master arm to a graphics based simulator of the remote environment coupled with a robot manipulator at the remote, delayed site. the operator\u27s actions will be monitored to provide both kinesthetic and visual feedback and to generate symbolic motion commands to the remote slave. the slave robot will then execute these symbolic commands delayed in time. While much of a task will proceed error free, when an error does occur the slave system will transmit data back to the master and the master environment will be reset to the error state

    Achieving reliability using behavioural modules in a robotic assembly system

    Get PDF
    The research in this thesis looks at improving the reliability of robotic as¬ sembly while still retaining the flexibility to change the system to cope with dif¬ ferent assemblies. The lack of a truly flexible robotic assembly system presents a problem which current systems have yet to overcome. An experimental sys¬ tem has been designed and implemented to demonstrate the ideas presented in this work. Runs of this system have also been performed to test and assess the scheme which has been developed.The Behaviour-based SOMASS system looks at decomposing the task into modular units, called Behavioural Modules, which reliably perform the as¬ sembly task by using variation reducing strategies. The thesis work looks at expanding this framework to produce a system which relaxes the constraints of complete reliability within a Behavioural Module by embedding these in a re¬ liable system architecture. This means that Behavioural Modules do not have to guarantee to successfully perform their given task but instead can perform it adequately, with occasional failures dealt with by the appropriate introduction of alternative actionsTo do this, the concepts of Exit States, the Ideal Execution Path, and Alter¬ native Execution Paths have been described. The Exit State of a Behavioural Module gives an indication of the control path which has actually been taken during its execution. This information, along with appropriate information available to the execution system (such as sensor and planner data), allows the Ideal Execution Path and Alternative Execution Paths to be defined. These show, respectively, the best control path through the system (as determined by the system designer) and alternative control routes which can be taken when necessary

    Worker-robot cooperation and integration into the manufacturing workcell via the holonic control architecture

    Get PDF
    Cooperative manufacturing is a new field of research, which addresses new challenges beyond the physical safety of the worker. Those new challenges appear due to the need to connect the worker and the cobot from the informatics point of view in one cooperative workcell. This requires developing an appropriate manufacturing control system, which fits the nature of both the worker and the cobot. Furthermore, the manufacturing control system must be able to understand the production variations, to guide the cooperation between worker and the cobot and adapt with the production variations.Die kooperative Fertigung ist ein neues Forschungsgebiet, das sich neuen Herausforderungen stellt. Diese neuen Herausforderungen ergeben sich aus der Notwendigkeit, den Arbeiter und den Cobot aus der Sicht der Informatik in einem kooperativen Arbeitsplatz zu verbinden. Dies erfordert die Entwicklung eines geeigneten Produktionskontrollsystems, das sowohl der Natur des Arbeiters als auch der des Cobots entspricht. Darüber hinaus muss die Fertigungssteuerung in der Lage sein, die Produktionsschwankungen zu verstehen, um die Zusammenarbeit zwischen Arbeiter und Cobot zu steuern

    Aspects of an open architecture robot controller and its integration with a stereo vision sensor.

    Get PDF
    The work presented in this thesis attempts to improve the performance of industrial robot systems in a flexible manufacturing environment by addressing a number of issues related to external sensory feedback and sensor integration, robot kinematic positioning accuracy, and robot dynamic control performance. To provide a powerful control algorithm environment and the support for external sensor integration, a transputer based open architecture robot controller is developed. It features high computational power, user accessibility at various robot control levels and external sensor integration capability. Additionally, an on-line trajectory adaptation scheme is devised and implemented in the open architecture robot controller, enabling a real-time trajectory alteration of robot motion to be achieved in response to external sensory feedback. An in depth discussion is presented on integrating a stereo vision sensor with the robot controller to perform external sensor guided robot operations. Key issues for such a vision based robot system are precise synchronisation between the vision system and the robot controller, and correct target position prediction to counteract the inherent time delay in image processing. These were successfully addressed in a demonstrator system based on a Puma robot. Efforts have also been made to improve the Puma robot kinematic and dynamic performance. A simple, effective, on-line algorithm is developed for solving the inverse kinematics problem of a calibrated industrial robot to improve robot positioning accuracy. On the dynamic control aspect, a robust adaptive robot tracking control algorithm is derived that has an improved performance compared to a conventional PID controller as well as exhibiting relatively modest computational complexity. Experiments have been carried out to validate the open architecture robot controller and demonstrate the performance of the inverse kinematics algorithm, the adaptive servo control algorithm, and the on-line trajectory generation. By integrating the open architecture robot controller with a stereo vision sensor system, robot visual guidance has been achieved with experimental results showing that the integrated system is capable of detecting, tracking and intercepting random objects moving in 3D trajectory at a velocity up to 40mm/s

    Teleprogramming: Overcoming Communication Delays in Remote Manipulation (Dissertation Proposal)

    Get PDF
    Modern industrial processes (nuclear, chemical industry), public service needs (firefighting, rescuing), and research interests (undersea, outer space exploration) have established a clear need to perform work remotely. Whereas a purely autonomous manipulative capability would solve the problem, its realization is beyond the state of the art in robotics [Stark et al.,1988]. Some of the problems plaguing the development of autonomous systems are: a) anticipation, detection, and correction of the multitude of possible error conditions arising during task execution, b) development of general strategy planning techniques transcending any particular limited task domain, c) providing the robot system with real-time adaptive behavior to accommodate changes in the remote environment, d) allowing for on-line learning and performance improvement through experience , etc. The classical approach to tackle some of these problems has been to introduce problem solvers and expert systems as part of the remote robot workcell control system. However, such systems tend to be limited in scope (to remain intellectually and implementationally manageable), too slow to be useful in real-time robot task execution, and generally fail to adequately represent and model the complexities of the real world environment. These problems become particularly severe when only partial information about the remote environment is available

    Teleprogramming: Remote Site Research Issues: (Dissertation Proposal)

    Get PDF
    This document proposes the development of the remote site workcell for teleoperation with significant communication delays (on the order of one to 20 seconds). In these situations, direct teleoperation becomes difficult to impossible due to the delays in visual and force feedback. Teleprogramming has been developed in order to overcome this problem. In teleprogramming, the human operator interacts in real time with a graphical model of the remote site, which provides for real time visual and force feedback. The master arm and the manipulator/model interactions, given predefined criteria of what types of motions are to be expected. These commands are then sent via a communication link, which may delay the signals, to the remote site. Based upon a remote world model, predefined and possibly refined as more information is obtained, the slave carries out commanded operations in the remote world and decides whether each step has been executed correctly. The remote site receives commands sent via the delayed communication link. These commands must be parsed and translated into the local robot control language, which includes insertion of dynamic parameters that are not generated by the master system. The commands are then executed by the hybrid position/force controller, and the resulting motions monitored for errors. This proposal addresses the following remote site issues: low level manipulator control using an instrumented compliant wrist for sensory feedback, higher level command execution implementing dynamic parameters, and remote manipulator tool usage and control

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications
    corecore