102 research outputs found

    Graph coloring-based multichannel MAC protocol in distributed underwater acoustic sensor networks

    Get PDF
    In this paper, the multichannel medium access control (MAC) problem in distributed underwater acoustic sensor networks (UASNs) were investigated. Compared with single-channel MAC protocols in terrestrial radio networks, there exist multichannel hidden terminal problem and long-delay hidden terminal problem in multichannel MAC protocol due to long propagation delay in UASNs. In addition, energy constraint makes channel allocation a challenging problem in distributed UASNs. To solve these aforementioned problems, a new multichannel MAC protocol, called graph coloring-based multichannel MAC protocol (GCMAC) is present. The protocol GCMAC is a synchronized MAC protocol which splits the time into three phases, namely, channel negotiation phase, channel selecting phase and data transmission phase. Specially, the rule for selecting channel is carefully designed based on graph coloring theory to avoid collision and maximize the utilization rate of channels in channel selecting phase. Simulation results show that GCMAC can greatly improve the system throughput and energy efficiency by effectively solving the hidden terminal problems and channel allocation problem

    Medium Access Control in Distributed Networks with Large Propagation Delay

    Full text link
    Most of the Earth is covered by water, so underwater acoustic networks (UWANs) are becoming increasingly popular in a variety of undersea applications. The needs to understand the underwater environment and exploit rich undersea resources have motivated a further development of UWANs. Underwater acoustic signals suffer from more difficult physical channel phenomena than terrestrial radio signals due to the harsh underwater environment, such as sound absorption, time-varying multipath spread, man-made and ambient noise, temperature and pressure dependent refraction, scattering and Doppler shift. Among all the challenges, the large ratio of propagation delay to packet duration (relative propagation delay (a)) is arguably the most difficult one to address in the Medium Access Control (MAC) layer. In this dissertation we focus on the examination and improvement of the MAC layer function in UWANs, based on a critical examination of existing techniques. Many MAC techniques have been proposed in recent years, however most of them assume the ratio of the propagation delay to the packet duration is negligibly small (a>1), these protocols perform poorly. This is because the large a leads to both a large negotiation delay in handshaking based protocols and the space-time uncertainty problem as the packets do not arrive at each node contemporarily. Some underwater-oriented protocols have been proposed which attempt to address these issues but the more successful rely on master nodes or a common understanding of geometry or time. We show by analysis and simulation that it is possible to eliminate collisions in ad-hoc networks with large relative propagation delay (a>>1) as well as improving the channel utilisation, without a common understanding of geometry or time. This technique is generally applicable, even for truly ad-hoc homogeneous peer-to-peer networks with no reliance on master nodes or other heterogeneous features. The mechanism is based on future scheduling with the inclusion of overhearing of RTS messages and allowing third-party objections to proposed transmissions. This MAC mechanism is immediately applicable in underwater acoustic networks (UWANs), and may find other uses, such as in space or very high rate terrestrial wireless networks. In summary, the key contributions of this study are: investigating the causes of the poor performance of existing MAC protocols in ad-hoc UWANs with large relative propagation delay, fully detailing the problem in order to propose analytic solutions, demonstrating how the MAC layer of an ad-hoc UWAN can eliminate packet collisions as well as improve channel utilisation without time synchronization or a network’s self-configuring phase to gain knowledge of the geometry, and verifying the utility of the proposals via both theoretical analysis and simulations

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Networks, Communication, and Computing Vol. 2

    Get PDF
    Networks, communications, and computing have become ubiquitous and inseparable parts of everyday life. This book is based on a Special Issue of the Algorithms journal, and it is devoted to the exploration of the many-faceted relationship of networks, communications, and computing. The included papers explore the current state-of-the-art research in these areas, with a particular interest in the interactions among the fields

    Actas da 10ª Conferência sobre Redes de Computadores

    Get PDF
    Universidade do MinhoCCTCCentro AlgoritmiCisco SystemsIEEE Portugal Sectio

    Spectrum Allocation in Networks with Finite Sources and Data-Driven Characterization of Users\u27 Stochastic Dynamics

    Get PDF
    During emergency situations, the public safety communication systems (PSCSs) get overloaded with high traffic loads. Note that these PSCSs are finite source networks. The goal of our study is to propose techniques for an efficient allocation of spectrum in finite source networks that can help alleviate the overloading of PSCSs. In a PSCS, there are two system segments, one for the system-access control and the other for communications, each having dedicated frequency channels. The first part of our research, consisting of three projects, is based on modeling and analysis of finite source systems for optimal spectrum allocation, for both access-control and communications. In the first project, Chapter 2, we study the allocation of spectrum based on the concept of cognitive radio systems. In the second project, Chapter 3, we study the optimal communication channel allocation by call admission and preemption control. In the third project, Chapter 4, we study the optimal joint allocation of frequency channels for access-control and communications. Note that the aforementioned spectrum allocation techniques require the knowledge of the call traffic parameters and the priority levels of the users in the system. For practical systems, these required pieces of information are extracted from the call records meta-data. A key fact that should be considered while analyzing the call records is that the call arrival traffic and the users priority levels change with a change in events on the ground. This is so because a change in events on the ground affects the communication behavior of the users in the system, which affects the call arrival traffic and the priority levels of the users. Thus, the first and the foremost step in analyzing the call records data for a given user, for extracting the call traffic information, is to segment the data into time intervals of homogeneous or stationary communication behavior of the user. Note that such a segmentation of the data of a practical PSCS is the goal of our fourth project, Chapter 5, which constitutes the second part of our study

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings of the workshop are presented. The mission of the conference was to transfer advanced technologies developed by the Federal government, its contractors, and other high-tech organizations to U.S. industries for their use in developing new or improved products and processes. Volume two presents papers on the following topics: materials science, robotics, test and measurement, advanced manufacturing, artificial intelligence, biotechnology, electronics, and software engineering
    • …
    corecore