2,170 research outputs found

    Towards an Efficient Evaluation of General Queries

    Get PDF
    Database applications often require to evaluate queries containing quantifiers or disjunctions, e.g., for handling general integrity constraints. Existing efficient methods for processing quantifiers depart from the relational model as they rely on non-algebraic procedures. Looking at quantified query evaluation from a new angle, we propose an approach to process quantifiers that makes use of relational algebra operators only. Our approach performs in two phases. The first phase normalizes the queries producing a canonical form. This form permits to improve the translation into relational algebra performed during the second phase. The improved translation relies on a new operator - the complement-join - that generalizes the set difference, on algebraic expressions of universal quantifiers that avoid the expensive division operator in many cases, and on a special processing of disjunctions by means of constrained outer-joins. Our method achieves an efficiency at least comparable with that of previous proposals, better in most cases. Furthermore, it is considerably simpler to implement as it completely relies on relational data structures and operators

    The performance of updating xml in traditional databases

    Get PDF

    Twelve Theses on Reactive Rules for the Web

    Get PDF
    Reactivity, the ability to detect and react to events, is an essential functionality in many information systems. In particular, Web systems such as online marketplaces, adaptive (e.g., recommender) systems, and Web services, react to events such as Web page updates or data posted to a server. This article investigates issues of relevance in designing high-level programming languages dedicated to reactivity on the Web. It presents twelve theses on features desirable for a language of reactive rules tuned to programming Web and Semantic Web applications

    FICCS; A Fact Integrity Constraint Checking System

    Get PDF

    Fighting money laundering with technology: a case study of Bank X in the UK

    Get PDF
    This paper presents a longitudinal interpretive case study of a UK bank’s efforts to combat Money Laundering (ML) by expanding the scope of its profiling of ML behaviour. The concept of structural coupling, taken from systems theory, is used to reflect on the bank’s approach to theorize about the nature of ML-profiling. The paper offers a practical contribution by laying a path towards the improvement of money laundering detection in an organizational context while a set of evaluation measures is extracted from the case study. Generalizing from the case of the bank, the paper presents a systems-oriented conceptual framework for ML monitoring

    Graph Pattern Matching on Symmetric Multiprocessor Systems

    Get PDF
    Graph-structured data can be found in nearly every aspect of today's world, be it road networks, social networks or the internet itself. From a processing perspective, finding comprehensive patterns in graph-structured data is a core processing primitive in a variety of applications, such as fraud detection, biological engineering or social graph analytics. On the hardware side, multiprocessor systems, that consist of multiple processors in a single scale-up server, are the next important wave on top of multi-core systems. In particular, symmetric multiprocessor systems (SMP) are characterized by the fact, that each processor has the same architecture, e.g. every processor is a multi-core and all multiprocessors share a common and huge main memory space. Moreover, large SMPs will feature a non-uniform memory access (NUMA), whose impact on the design of efficient data processing concepts should not be neglected. The efficient usage of SMP systems, that still increase in size, is an interesting and ongoing research topic. Current state-of-the-art architectural design principles provide different and in parts disjunct suggestions on which data should be partitioned and or how intra-process communication should be realized. In this thesis, we propose a new synthesis of four of the most well-known principles Shared Everything, Partition Serial Execution, Data Oriented Architecture and Delegation, to create the NORAD architecture, which stands for NUMA-aware DORA with Delegation. We built our research prototype called NeMeSys on top of the NORAD architecture to fully exploit the provided hardware capacities of SMPs for graph pattern matching. Being an in-memory engine, NeMeSys allows for online data ingestion as well as online query generation and processing through a terminal based user interface. Storing a graph on a NUMA system inherently requires data partitioning to cope with the mentioned NUMA effect. Hence, we need to dissect the graph into a disjunct set of partitions, which can then be stored on the individual memory domains. This thesis analyzes the capabilites of the NORAD architecture, to perform scalable graph pattern matching on SMP systems. To increase the systems performance, we further develop, integrate and evaluate suitable optimization techniques. That is, we investigate the influence of the inherent data partitioning, the interplay of messaging with and without sufficient locality information and the actual partition placement on any NUMA socket in the system. To underline the applicability of our approach, we evaluate NeMeSys against synthetic datasets and perform an end-to-end evaluation of the whole system stack on the real world knowledge graph of Wikidata
    • …
    corecore