238 research outputs found

    Parallel Communicating String - Graph P System

    Get PDF
    The concept of parallel communicating grammar systems generating string languages is extended to string-graph P systems and their generative power is studied. It is also established that for every language L generated by a parallel communicating grammar system there exists an equivalent parallel communicating string-graph P system generating the string-graph language corresponding to L

    Graph grammars with string-regulated rewriting

    Get PDF
    Multicellular organisms undergo a complex developmental process, orchestrated by the genetic information in their cells, in order to form a newborn individual from a fertilized egg. This complex process, not completely understood yet, is believed to have a key role in generating the impressive biotic diversity of organisms found on earth. Inspired by mechanisms of Eukaryotic genetic expression, we propose and analyse graph grammars with string-regulated rewriting. In these grammatical systems a genome sequence is represented by a regulatory string, a graph corresponds to an organism, and a set of graph grammar rules represents different forms of implementing cell division. Accordingly, a graph derivation by the graph grammar resembles the developmental process of an organism. We give examples of the concept and compare its generative power to the power of the traditional context-free graph grammars. We demonstrate that the power of expression increases when genetic regulation is included in the model, as compared to non-regulated grammars. Additionally, we propose a hierarchy of string-regulated graph grammars, arranged by expressive power. These results highlight the key role that the transmission of regulatory information during development has in the emergence of biological diversity.D.L. was supported in part by a research stay fellowship at Otto-von-Guericke-Universität Magdeburg from the Spanish Ministerio de Educación

    Growing Graphs with Hyperedge Replacement Graph Grammars

    Full text link
    Discovering the underlying structures present in large real world graphs is a fundamental scientific problem. In this paper we show that a graph's clique tree can be used to extract a hyperedge replacement grammar. If we store an ordering from the extraction process, the extracted graph grammar is guaranteed to generate an isomorphic copy of the original graph. Or, a stochastic application of the graph grammar rules can be used to quickly create random graphs. In experiments on large real world networks, we show that random graphs, generated from extracted graph grammars, exhibit a wide range of properties that are very similar to the original graphs. In addition to graph properties like degree or eigenvector centrality, what a graph "looks like" ultimately depends on small details in local graph substructures that are difficult to define at a global level. We show that our generative graph model is able to preserve these local substructures when generating new graphs and performs well on new and difficult tests of model robustness.Comment: 18 pages, 19 figures, accepted to CIKM 2016 in Indianapolis, I

    Verification of Random Graph Transformation Systems

    Get PDF
    AbstractIn this paper we describe some statistical results obtained by the verification of random graph transformation systems (GTSs). As a verification technique we use over-approximation of GTSs by Petri nets. Properties we want to verify are given by markings of Petri nets. We also use counterexample-guided abstraction refinement approach to refine the obtained approximation. A software tool (Augur) supports the verification procedure. The idea of the paper is to see how many of the generated systems can be successfully verified using this technique

    Graph-Based Shape Analysis Beyond Context-Freeness

    Full text link
    We develop a shape analysis for reasoning about relational properties of data structures. Both the concrete and the abstract domain are represented by hypergraphs. The analysis is parameterized by user-supplied indexed graph grammars to guide concretization and abstraction. This novel extension of context-free graph grammars is powerful enough to model complex data structures such as balanced binary trees with parent pointers, while preserving most desirable properties of context-free graph grammars. One strength of our analysis is that no artifacts apart from grammars are required from the user; it thus offers a high degree of automation. We implemented our analysis and successfully applied it to various programs manipulating AVL trees, (doubly-linked) lists, and combinations of both

    Primitives for Contract-based Synchronization

    Full text link
    We investigate how contracts can be used to regulate the interaction between processes. To do that, we study a variant of the concurrent constraints calculus presented in [1], featuring primitives for multi-party synchronization via contracts. We proceed in two directions. First, we exploit our primitives to model some contract-based interactions. Then, we discuss how several models for concurrency can be expressed through our primitives. In particular, we encode the pi-calculus and graph rewriting.Comment: In Proceedings ICE 2010, arXiv:1010.530

    An Operational Semantics of CommUnity Based on Graph Transformation Systems

    Get PDF
    AbstractWe propose an operational semantics, based on graph transformation, of CommUnity, a simple program design language. Each action of a single CommUnity design is modeled by a synchronized hyperedge replacement rule. Synchronized actions of several interconnected designs in a configuration result automatically from the individual rules thanks to the rule synchronization mechanism
    • …
    corecore