3,221 research outputs found

    I Can See Your Aim: Estimating User Attention From Gaze For Handheld Robot Collaboration

    Get PDF
    This paper explores the estimation of user attention in the setting of a cooperative handheld robot: a robot designed to behave as a handheld tool but that has levels of task knowledge. We use a tool-mounted gaze tracking system, which, after modelling via a pilot study, we use as a proxy for estimating the attention of the user. This information is then used for cooperation with users in a task of selecting and engaging with objects on a dynamic screen. Via a video game setup, we test various degrees of robot autonomy from fully autonomous, where the robot knows what it has to do and acts, to no autonomy where the user is in full control of the task. Our results measure performance and subjective metrics and show how the attention model benefits the interaction and preference of users.Comment: this is a corrected version of the one that was published at IROS 201

    Spatial Programming for Industrial Robots through Task Demonstration

    Get PDF
    We present an intuitive system for the programming of industrial robots using markerless gesture recognition and mobile augmented reality in terms of programming by demonstration. The approach covers gesture-based task definition and adaption by human demonstration, as well as task evaluation through augmented reality. A 3D motion tracking system and a handheld device establish the basis for the presented spatial programming system. In this publication, we present a prototype toward the programming of an assembly sequence consisting of several pick-and-place tasks. A scene reconstruction provides pose estimation of known objects with the help of the 2D camera of the handheld. Therefore, the programmer is able to define the program through natural bare-hand manipulation of these objects with the help of direct visual feedback in the augmented reality application. The program can be adapted by gestures and transmitted subsequently to an arbitrary industrial robot controller using a unified interface. Finally, we discuss an application of the presented spatial programming approach toward robot-based welding tasks

    Application of an Intuitive, Glove-type Remote Control with Haptic Feedback to Quadcopters

    Get PDF
    Although remote controllers for drones, based upon a classic two-joystick architecture, are unwieldy, they still see widespread use. As a replacement, we propose a remote control with a glove-based architecture that utilizes haptic feedback from the quadcopter. The proposed controller should be far more intuitive, making drone flight easier and more intuitive. Additionally, since the pilot will have one hand free, he or she can use maps, electronics, and other aids much more straightforwardly than with a two-handed controller. While our technology is designed for drones, it also could see further usage in a wide variety of civilian and military applications, from entertainment to industry. This glove-based architecture with haptic feedback might well become a staple of the future

    Performance Investigation and Repeatability Assessment of a Mobile Robotic System for 3D Mapping

    Get PDF
    In this paper, we present a quantitative performance investigation and repeatability assessment of a mobile robotic system for 3D mapping. With the aim of a more efficient and automatic data acquisition process with respect to well-established manual topographic operations, a 3D laser scanner coupled with an inertial measurement unit is installed on a mobile platform and used to perform a high-resolution mapping of the surrounding environment. Point clouds obtained with the use of a mobile robot are compared with those acquired with the device carried manually as well as with a terrestrial laser scanner survey that serves as a ground truth. Experimental results show that both mapping modes provide similar accuracy and repeatability, whereas the robotic system compares favorably with respect to the handheld modality in terms of noise level and point distribution. The outcomes demonstrate the feasibility of the mobile robotic platform as a promising technology for automatic and accurate 3D mapping

    Optical coherence tomography-based consensus definition for lamellar macular hole.

    Get PDF
    BackgroundA consensus on an optical coherence tomography definition of lamellar macular hole (LMH) and similar conditions is needed.MethodsThe panel reviewed relevant peer-reviewed literature to reach an accord on LMH definition and to differentiate LMH from other similar conditions.ResultsThe panel reached a consensus on the definition of three clinical entities: LMH, epiretinal membrane (ERM) foveoschisis and macular pseudohole (MPH). LMH definition is based on three mandatory criteria and three optional anatomical features. The three mandatory criteria are the presence of irregular foveal contour, the presence of a foveal cavity with undermined edges and the apparent loss of foveal tissue. Optional anatomical features include the presence of epiretinal proliferation, the presence of a central foveal bump and the disruption of the ellipsoid zone. ERM foveoschisis definition is based on two mandatory criteria: the presence of ERM and the presence of schisis at the level of Henle's fibre layer. Three optional anatomical features can also be present: the presence of microcystoid spaces in the inner nuclear layer (INL), an increase of retinal thickness and the presence of retinal wrinkling. MPH definition is based on three mandatory criteria and two optional anatomical features. Mandatory criteria include the presence of a foveal sparing ERM, the presence of a steepened foveal profile and an increased central retinal thickness. Optional anatomical features are the presence of microcystoid spaces in the INL and a normal retinal thickness.ConclusionsThe use of the proposed definitions may provide uniform language for clinicians and future research

    Robots and tools for remodeling bone

    Get PDF
    The field of robotic surgery has progressed from small teams of researchers repurposing industrial robots, to a competitive and highly innovative subsection of the medical device industry. Surgical robots allow surgeons to perform tasks with greater ease, accuracy, or safety, and fall under one of four levels of autonomy; active, semi-active, passive, and remote manipulator. The increased accuracy afforded by surgical robots has allowed for cementless hip arthroplasty, improved postoperative alignment following knee arthroplasty, and reduced duration of intraoperative fluoroscopy among other benefits. Cutting of bone has historically used tools such as hand saws and drills, with other elaborate cutting tools now used routinely to remodel bone. Improvements in cutting accuracy and additional options for safety and monitoring during surgery give robotic surgeries some advantages over conventional techniques. This article aims to provide an overview of current robots and tools with a common target tissue of bone, proposes a new process for defining the level of autonomy for a surgical robot, and examines future directions in robotic surgery

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots

    No full text

    Service Robots and Humanitarian Demining

    Get PDF
    • …
    corecore