169 research outputs found

    Offline Text-Independent Writer Identification based on word level data

    Full text link
    This paper proposes a novel scheme to identify the authorship of a document based on handwritten input word images of an individual. Our approach is text-independent and does not place any restrictions on the size of the input word images under consideration. To begin with, we employ the SIFT algorithm to extract multiple key points at various levels of abstraction (comprising allograph, character, or combination of characters). These key points are then passed through a trained CNN network to generate feature maps corresponding to a convolution layer. However, owing to the scale corresponding to the SIFT key points, the size of a generated feature map may differ. As an alleviation to this issue, the histogram of gradients is applied on the feature map to produce a fixed representation. Typically, in a CNN, the number of filters of each convolution block increase depending on the depth of the network. Thus, extracting histogram features for each of the convolution feature map increase the dimension as well as the computational load. To address this aspect, we use an entropy-based method to learn the weights of the feature maps of a particular CNN layer during the training phase of our algorithm. The efficacy of our proposed system has been demonstrated on two publicly available databases namely CVL and IAM. We empirically show that the results obtained are promising when compared with previous works

    Recognizing Visual Object Using Machine Learning Techniques

    Get PDF
    Nowadays, Visual Object Recognition (VOR) has received growing interest from researchers and it has become a very active area of research due to its vital applications including handwriting recognition, diseases classification, face identification ..etc. However, extracting the relevant features that faithfully describe the image represents the challenge of most existing VOR systems. This thesis is mainly dedicated to the development of two VOR systems, which are presented in two different contributions. As a first contribution, we propose a novel generic feature-independent pyramid multilevel (GFIPML) model for extracting features from images. GFIPML addresses the shortcomings of two existing schemes namely multi-level (ML) and pyramid multi-level (PML), while also taking advantage of their pros. As its name indicates, the proposed model can be used by any kind of the large variety of existing features extraction methods. We applied GFIPML for the task of Arabic literal amount recognition. Indeed, this task is challenging due to the specific characteristics of Arabic handwriting. While most literary works have considered structural features that are sensitive to word deformations, we opt for using Local Phase Quantization (LPQ) and Binarized Statistical Image Feature (BSIF) as Arabic handwriting can be considered as texture. To further enhance the recognition yields, we considered a multimodal system based on the combination of LPQ with multiple BSIF descriptors, each one with a different filter size. As a second contribution, a novel simple yet effcient, and speedy TR-ICANet model for extracting features from unconstrained ear images is proposed. To get rid of unconstrained conditions (e.g., scale and pose variations), we suggested first normalizing all images using CNN. The normalized images are fed then to the TR-ICANet model, which uses ICA to learn filters. A binary hashing and block-wise histogramming are used then to compute the local features. At the final stage of TR-ICANet, we proposed to use an effective normalization method namely Tied Rank normalization in order to eliminate the disparity within blockwise feature vectors. Furthermore, to improve the identification performance of the proposed system, we proposed a softmax average fusing of CNN-based feature extraction approaches with our proposed TR-ICANet at the decision level using SVM classifier

    Spectrogram classification using dissimilarity space

    Get PDF
    In this work, we combine a Siamese neural network and different clustering techniques to generate a dissimilarity space that is then used to train an SVM for automated animal audio classification. The animal audio datasets used are (i) birds and (ii) cat sounds, which are freely available. We exploit different clustering methods to reduce the spectrograms in the dataset to a number of centroids that are used to generate the dissimilarity space through the Siamese network. Once computed, we use the dissimilarity space to generate a vector space representation of each pattern, which is then fed into an support vector machine (SVM) to classify a spectrogram by its dissimilarity vector. Our study shows that the proposed approach based on dissimilarity space performs well on both classification problems without ad-hoc optimization of the clustering methods. Moreover, results show that the fusion of CNN-based approaches applied to the animal audio classification problem works better than the stand-alone CNNs

    Feature design and lexicon reduction for efficient offline handwriting recognition

    Get PDF
    This thesis establishes a pattern recognition framework for offline word recognition systems. It focuses on the image level features because they greatly influence the recognition performance. In particular, we consider two complementary aspects of prominent features impact: lexicon reduction and the actual recognition. The first aspect, lexicon reduction, consists in the design of a weak classifier which outputs a set of candidate word hypotheses given a word image. Its main purpose is to reduce the recognition computational time while maintaining (or even improving) the recognition rate. The second aspect is the actual recognition system itself. In fact, several features exist in the literature based on different fields of research, but no consensus exists concerning the most promising ones. The goal of the proposed framework is to improve our understanding of relevant features in order to build better recognition systems. For this purpose, we addressed two specific problems: 1) feature design for lexicon reduction (application to Arabic script), and 2) feature evaluation for cursive handwriting recognition (application to Latin and Arabic scripts). Few methods exist for lexicon reduction in Arabic script, unlike Latin script. Existing methods use salient features of Arabic words such as the number of subwords and diacritics, but totally ignore the shape of the subwords. Therefore, our first goal is to perform lexicon reductionn based on subwords shape. Our approach is based on shape indexing, where the shape of a query subword is compared to a labeled database of sample subwords. For efficient comparison with a low computational overhead, we proposed the weighted topological signature vector (W-TSV) framework, where the subword shape is modeled as a weighted directed acyclic graph (DAG) from which the W-TSV vector is extracted for efficient indexing. The main contributions of this work are to extend the existing TSV framework to weighted DAG and to propose a shape indexing approach for lexicon reduction. Good performance for lexicon reduction is achieved for Arabic subwords. Nevertheless, the performance remains modest for Arabic words. Considering the results of our first work on Arabic lexicon reduction, we propose to build a new index for better performance at the word level. The subword shape and the number of subwords and diacritics are all important components of Arabic word shape. We therefore propose the Arabic word descriptor (AWD) which integrates all the aforementioned components. It is built in two steps. First, a structural descriptor (SD) is computed for each connected component (CC) of the word image. It describes the CC shape using the bag-of-words model, where each visual word represents a different local shape structure. Then, the AWD is formed by concatenating the SDs using an efficient heuristic, implicitly discriminating between subwords and diacritics. In the context of lexicon reduction, the AWD is used to index a reference database. The main contribution of this work is the design of the AWD, which integrates lowlevel cues (subword shape structure) and symbolic information (subword counts and diacritics) into a single descriptor. The proposed method has a low computational overhead, it is simple to implement and it provides state-of-the-art performance for lexicon reduction on two Arabic databases, namely the Ibn Sina database of subwords and the IFN/ENIT database of words. The last part of this thesis focuses on features for word recognition. A large body of features exist in the literature, each of them being motivated by different fields, such as pattern recognition, computer vision or machine learning. Identifying the most promising approaches would improve the design of the next generation of features. Nevertheless, because they are based on different concepts, it is difficult to compare them on a theoretical ground and efficient empirical tools are needed. Therefore, the last objective of the thesis is to provide a method for feature evaluation that assesses the strength and complementarity of existing features. A combination scheme has been designed for this purpose, in which each feature is evaluated through a reference recognition system, based on recurrent neural networks. More precisely, each feature is represented by an agent, which is an instance of the recognition system trained with that feature. The decisions of all the agents are combined using a weighted vote. The weights are jointly optimized during a training phase in order to increase the weighted vote of the true word label. Therefore, they reflect the strength and complementarity of the agents and their features for the given task. Finally, they are converted into a numerical score assigned to each feature, which is easy to interpret under this combination model. To the best of our knowledge, this is the first feature evaluation method able to quantify the importance of each feature, instead of providing a ranking based on the recognition rate. Five state-of-the-art features have been tested, and our results provide interesting insight for future feature design

    Towards robust real-world historical handwriting recognition

    Get PDF
    In this thesis, we make a bridge from the past to the future by using artificial-intelligence methods for text recognition in a historical Dutch collection of the Natuurkundige Commissie that explored Indonesia (1820-1850). In spite of the successes of systems like 'ChatGPT', reading historical handwriting is still quite challenging for AI. Whereas GPT-like methods work on digital texts, historical manuscripts are only available as an extremely diverse collections of (pixel) images. Despite the great results, current DL methods are very data greedy, time consuming, heavily dependent on the human expert from the humanities for labeling and require machine-learning experts for designing the models. Ideally, the use of deep learning methods should require minimal human effort, have an algorithm observe the evolution of the training process, and avoid inefficient use of the already sparse amount of labeled data. We present several approaches towards dealing with these problems, aiming to improve the robustness of current methods and to improve the autonomy in training. We applied our novel word and line text recognition approaches on nine data sets differing in time period, language, and difficulty: three locally collected historical Latin-based data sets from Naturalis, Leiden; four public Latin-based benchmark data sets for comparability with other approaches; and two Arabic data sets. Using ensemble voting of just five neural networks, a level of accuracy was achieved which required hundreds of neural networks in earlier studies. Moreover, we increased the speed of evaluation of each training epoch without the need of labeled data

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Multimodal representation learning with neural networks

    Get PDF
    Abstract: Representation learning methods have received a lot of attention by researchers and practitioners because of their successful application to complex problems in areas such as computer vision, speech recognition and text processing [1]. Many of these promising results are due to the development of methods to automatically learn the representation of complex objects directly from large amounts of sample data [2]. These efforts have concentrated on data involving one type of information (images, text, speech, etc.), despite data being naturally multimodal. Multimodality refers to the fact that the same real-world concept can be described by different views or data types. Addressing multimodal automatic analysis faces three main challenges: feature learning and extraction, modeling of relationships between data modalities and scalability to large multimodal collections [3, 4]. This research considers the problem of leveraging multiple sources of information or data modalities in neural networks. It defines a novel model called gated multimodal unit (GMU), designed as an internal unit in a neural network architecture whose purpose is to find an intermediate representation based on a combination of data from different modalities. The GMU learns to decide how modalities influence the activation of the unit using multiplicative gates. The GMU can be used as a building block for different kinds of neural networks and can be seen as a form of intermediate fusion. The model was evaluated on four supervised learning tasks in conjunction with fully-connected and convolutional neural networks. We compare the GMU with other early and late fusion methods, outperforming classification scores in the evaluated datasets. Strategies to understand how the model gives importance to each input were also explored. By measuring correlation between gate activations and predictions, we were able to associate modalities with classes. It was found that some classes were more correlated with some particular modality. Interesting findings in genre prediction show, for instance, that the model associates the visual information with animation movies while textual information is more associated with drama or romance movies. During the development of this project, three new benchmark datasets were built and publicly released. The BCDR-F03 dataset which contains 736 mammography images and serves as benchmark for mass lesion classification. The MM-IMDb dataset containing around 27000 movie plots, poster along with 50 metadata annotations and that motivates new research in multimodal analysis. And the Goodreads dataset, a collection of 1000 books that encourages the research on success prediction based on the book content. This research also facilitates reproducibility of the present work by releasing source code implementation of the proposed methods.Doctorad

    Design of an Offline Handwriting Recognition System Tested on the Bangla and Korean Scripts

    Get PDF
    This dissertation presents a flexible and robust offline handwriting recognition system which is tested on the Bangla and Korean scripts. Offline handwriting recognition is one of the most challenging and yet to be solved problems in machine learning. While a few popular scripts (like Latin) have received a lot of attention, many other widely used scripts (like Bangla) have seen very little progress. Features such as connectedness and vowels structured as diacritics make it a challenging script to recognize. A simple and robust design for offline recognition is presented which not only works reliably, but also can be used for almost any alphabetic writing system. The framework has been rigorously tested for Bangla and demonstrated how it can be transformed to apply to other scripts through experiments on the Korean script whose two-dimensional arrangement of characters makes it a challenge to recognize. The base of this design is a character spotting network which detects the location of different script elements (such as characters, diacritics) from an unsegmented word image. A transcript is formed from the detected classes based on their corresponding location information. This is the first reported lexicon-free offline recognition system for Bangla and achieves a Character Recognition Accuracy (CRA) of 94.8%. This is also one of the most flexible architectures ever presented. Recognition of Korean was achieved with a 91.2% CRA. Also, a powerful technique of autonomous tagging was developed which can drastically reduce the effort of preparing a dataset for any script. The combination of the character spotting method and the autonomous tagging brings the entire offline recognition problem very close to a singular solution. Additionally, a database named the Boise State Bangla Handwriting Dataset was developed. This is one of the richest offline datasets currently available for Bangla and this has been made publicly accessible to accelerate the research progress. Many other tools were developed and experiments were conducted to more rigorously validate this framework by evaluating the method against external datasets (CMATERdb 1.1.1, Indic Word Dataset and REID2019: Early Indian Printed Documents). Offline handwriting recognition is an extremely promising technology and the outcome of this research moves the field significantly ahead

    Machine Learning in Resource-constrained Devices: Algorithms, Strategies, and Applications

    Get PDF
    The ever-increasing growth of technologies is changing people's everyday life. As a major consequence: 1) the amount of available data is growing and 2) several applications rely on battery supplied devices that are required to process data in real time. In this scenario the need for ad-hoc strategies for the development of low-power and low-latency intelligent systems capable of learning inductive rules from data using a modest mount of computational resources is becoming vital. At the same time, one needs to develop specic methodologies to manage complex patterns such as text and images. This Thesis presents different approaches and techniques for the development of fast learning models explicitly designed to be hosted on embedded systems. The proposed methods proved able to achieve state-of-the-art performances in term of the trade-off between generalization capabilities and area requirements when implemented in low-cost digital devices. In addition, advanced strategies for ecient sentiment analysis in text and images are proposed
    corecore