90,451 research outputs found

    Endangered Plants in Novel Urban Ecosystems Are Filtered by Strategy Type and Dispersal Syndrome, Not by Spatial Dependence on Natural Remnants

    Get PDF
    Understanding the contribution of cities to nature conservation is gaining increasing importance with a globally accelerating urbanization and requires insights into the mechanisms that underlie urban distribution patterns. While a considerable number of endangered plant species have been reported for cities, the spatial dependence of populations of these species on natural remnants versus anthropogenic ecosystems is critically understudied due to deficiencies in population distribution data. To which extent endangered species in anthropogenic ecosystems spatially rely on natural remnants is thus an open question. We used a unique dataset of 1,742 precisely mapped populations of 213 endangered plant species in the city of Berlin and related these point data to habitat patches that had been assigned to natural remnants, hybrid ecosystems and novel ecosystems according to the novel ecosystem approach. By applying point pattern analyses (Ripley’s K function, cross K function, cross pair correlation function) we unraveled the spatial dependence of the populations toward the different ecosystem types. Moreover, we tested how plant traits related to plant strategy and dispersal filter for species occurrence across ecosystems. Differentiating populations on anthropogenic sites revealed that populations in hybrid ecosystems spatially depended on natural remnants, but populations in novel ecosystems (i.e. more than a third of all populations) surprisingly didn’t. A conditional inference tree showed that endangered plant species in novel ecosystems are filtered for ruderal strategy type and wind dispersal syndrome, while competitive and stress-tolerant species were mainly confined to natural remnants. Our results highlight the importance of conserving natural remnants as habitats and seed sources of endangered plants. Yet novel urban ecosystems can support many populations of endangered plant species beyond the adjacency to natural remnants, with hybrid ecosystems likely acting as stepping stones. This indicates a specific contribution of urban ecosystems to biodiversity conservation. Since different filters modulate the species pools of different ecosystem types, novel urban ecosystems are not supposed to substitute fully the habitat functions of natural remnants. Our study thus highlights promising opportunities for involving the total range of urban ecosystem types into urban conservation approaches.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität BerlinBMBF, 01LC1501, BIBS-Verbund: Bridging in Biodiversity Science (BIBS

    Spatial patterns in mesic savannas: the local facilitation limit and the role of demographic stochasticity

    Get PDF
    We propose a model equation for the dynamics of tree density in mesic savannas. It considers long-range competition among trees and the effect of fire acting as a local facilitation mechanism. Despite short-range facilitation is taken to the local-range limit, the standard full spectrum of spatial structures obtained in general vegetation models is recovered. Long-range competition is thus the key ingredient for the development of patterns. The long time coexistence between trees and grass, and how fires affect the survival of trees as well as the maintenance of the patterns is studied. The influence of demographic noise is analyzed. The stochastic system, under the parameter constraints typical of mesic savannas, shows irregular patterns characteristics of realistic situations. The coexistence of trees and grass still remains at reasonable noise intensities.Comment: 12 pages, 7 figure

    The neo-society : realities of new socio-virtual paradigms

    Get PDF
    Chapter 14Thinking of space as a construct is by no means an easy feat. Transpose that concept from a real environment to a virtual space and blocks are not readily discernible. Th is is a world that has been immersed in digital otherness as far back as the early 1990s since the birth of the world wide web (WWW) proposal. Th ere exist two dichotomies: those pertaining to the younger generation and those to the older ones, where the former are aware of the digital fantastic worlds and the latter know the real haptic worlds, one where they can still remember that there was a time when a map was something one sought from a bookshop as against one that prompts one with the name of the street, the direction to turn, an occasional warning of a speed camera… In such a scenario, the older generation would be expected to know the physical world to a high degree and less that related to immersive technology; on the other hand the younger generation with their instant maps and online access would be expected to have a greater knowledge of their surroundings through the same access.peer-reviewe

    Embodied cognitive ecosophy: the relationship of mind, body, meaning and ecology

    Get PDF
    The concept of embodied cognition has had a major impact in a number of disciplines. The extent of its consequences on general knowledge and epistemology are still being explored. Embodied cognition in human geography has its own traditions and discourses but these have become somewhat isolated in the discipline itself. This paper argues that findings in other disciplines are of value in reconceptualising embodied cognition in human geography and this is explored by reconsidering the concept of ecosophy. Criticisms of ecosophy as a theory are considered and recent work in embodied cognition is applied to consider how such criticisms might be addressed. An updated conceptualisation is proposed, the embodied cognitive ecosophy, and three characteristics arising from this criticism and synthesis are presented with a view to inform future discussions of ecosophy and emotional geography

    Spatial prediction of species’ distributions from occurrence-only records: combining point pattern analysis, ENFA and regression-kriging

    Get PDF
    A computational framework to map species’ distributions (realized density) using occurrence-only data and environmental predictors is presented and illustrated using a textbook example and two case studies: distribution of root vole (Microtes oeconomus) in the Netherlands, and distribution of white-tailed eagle nests (Haliaeetus albicilla) in Croatia. The framework combines strengths of point pattern analysis (kernel smoothing), Ecological Niche Factor Analysis (ENFA) and geostatistics (logistic regression-kriging), as implemented in the spatstat, adehabitat and gstat packages of the R environment for statistical computing. A procedure to generate pseudo-absences is proposed. It uses Habitat Suitability Index (HSI, derived through ENFA) and distance from observations as weight maps to allocate pseudo-absence points. This design ensures that the simulated pseudo-absences fall further away from the occurrence points in both feature and geographical spaces. The simulated pseudo-absences can then be combined with occurrence locations and used to build regression-kriging prediction models. The output of prediction are either probabilitiesy of species’ occurrence or density measures. Addition of the pseudo-absence locations has proven effective — the adjusted R-square increased from 0.71 to 0.80 for root vole (562 records), and from 0.69 to 0.83 for white-tailed eagle (135 records) respectively; pseudo-absences improve spreading of the points in feature space and ensure consistent mapping over the whole area of interest. Results of cross validation (leave-one-out method) for these two species showed that the model explains 98% of the total variability in the density values for the root vole, and 94% of the total variability for the white-tailed eagle. The framework could be further extended to Generalized multivariate Linear Geostatistical Models and spatial prediction of multiple species. A copy of the R script and step-by-step instructions to run such analysis are available via contact author’s website

    Tropical rainforest bird community structure in relation to altitude, tree species composition, and null models in the Western Ghats, India

    Full text link
    Studies of species distributions on elevational gradients are essential to understand principles of community organisation as well as to conserve species in montane regions. This study examined the patterns of species richness, abundance, composition, range sizes, and distribution of rainforest birds at 14 sites along an elevational gradient (500-1400 m) in the Kalakad-Mundanthurai Tiger Reserve (KMTR) of the Western Ghats, India. In contrast to theoretical expectation, resident bird species richness did not change significantly with elevation although the species composition changed substantially (<10% similarity) between the lowest and highest elevation sites. Constancy in species richness was possibly due to relative constancy in productivity and lack of elevational trends in vegetation structure. Elevational range size of birds, expected to increase with elevation according to Rapoport's rule, was found to show a contrasting inverse U-shaped pattern because species with narrow elevational distributions, including endemics, occurred at both ends of the gradient (below 800 m and above 1,200 m). Bird species composition also did not vary randomly along the gradient as assessed using a hierarchy of null models of community assembly, from completely unconstrained models to ones with species richness and range-size distribution restrictions. Instead, bird community composition was significantly correlated with elevation and tree species composition of sites, indicating the influence of deterministic factors on bird community structure. Conservation of low- and high-elevation areas and maintenance of tree species composition against habitat alteration are important for bird conservation in the southern Western Ghats rainforests.Comment: 36 pages, 5 figures, two tables (including one in the appendix) Submitted to the Journal of the Bombay Natural History Society (JBNHS

    Application of optimal data-based binning method to spatial analysis of ecological datasets

    Full text link
    Investigation of highly structured data sets to unveil statistical regularities is of major importance in complex system research. The first step is to choose the scale at which to observe the process, the most informative scale being the one that includes the important features while disregarding noisy details in the data. In the investigation of spatial patterns, the optimal scale defines the optimal bin size of the histogram in which to visualize the empirical density of the pattern. In this paper we investigate a method proposed recently by K.~H.~Knuth to find the optimal bin size of an histogram as a tool for statistical analysis of spatial point processes. We test it through numerical simulations on various spatial processes which are of interest in ecology. We show that Knuth optimal bin size rule reducing noisy fluctuations performs better than standard kernel methods to infer the intensity of the underlying process. Moreover it can be used to highlight relevant spatial characteristics of the underlying distribution such as space anisotropy and clusterization. We apply these findings to analyse cluster-like structures in plants' arrangement of Barro Colorado Island rainforest.Comment: 49 pages, 25 figure
    • …
    corecore