7,083 research outputs found

    A Survey of Satisfiability Modulo Theory

    Full text link
    Satisfiability modulo theory (SMT) consists in testing the satisfiability of first-order formulas over linear integer or real arithmetic, or other theories. In this survey, we explain the combination of propositional satisfiability and decision procedures for conjunctions known as DPLL(T), and the alternative "natural domain" approaches. We also cover quantifiers, Craig interpolants, polynomial arithmetic, and how SMT solvers are used in automated software analysis.Comment: Computer Algebra in Scientific Computing, Sep 2016, Bucharest, Romania. 201

    The Challenge of Unifying Semantic and Syntactic Inference Restrictions

    No full text
    While syntactic inference restrictions don't play an important role for SAT, they are an essential reasoning technique for more expressive logics, such as first-order logic, or fragments thereof. In particular, they can result in short proofs or model representations. On the other hand, semantically guided inference systems enjoy important properties, such as the generation of solely non-redundant clauses. I discuss to what extend the two paradigms may be unifiable

    Deciding regular grammar logics with converse through first-order logic

    Full text link
    We provide a simple translation of the satisfiability problem for regular grammar logics with converse into GF2, which is the intersection of the guarded fragment and the 2-variable fragment of first-order logic. This translation is theoretically interesting because it translates modal logics with certain frame conditions into first-order logic, without explicitly expressing the frame conditions. A consequence of the translation is that the general satisfiability problem for regular grammar logics with converse is in EXPTIME. This extends a previous result of the first author for grammar logics without converse. Using the same method, we show how some other modal logics can be naturally translated into GF2, including nominal tense logics and intuitionistic logic. In our view, the results in this paper show that the natural first-order fragment corresponding to regular grammar logics is simply GF2 without extra machinery such as fixed point-operators.Comment: 34 page

    Hybrid Branching-Time Logics

    Full text link
    Hybrid branching-time logics are introduced as extensions of CTL-like logics with state variables and the downarrow-binder. Following recent work in the linear framework, only logics with a single variable are considered. The expressive power and the complexity of satisfiability of the resulting logics is investigated. As main result, the satisfiability problem for the hybrid versions of several branching-time logics is proved to be 2EXPTIME-complete. These branching-time logics range from strict fragments of CTL to extensions of CTL that can talk about the past and express fairness-properties. The complexity gap relative to CTL is explained by a corresponding succinctness result. To prove the upper bound, the automata-theoretic approach to branching-time logics is extended to hybrid logics, showing that non-emptiness of alternating one-pebble Buchi tree automata is 2EXPTIME-complete.Comment: An extended abstract of this paper was presented at the International Workshop on Hybrid Logics (HyLo 2007
    corecore