26,382 research outputs found

    Transdisciplinarity seen through Information, Communication, Computation, (Inter-)Action and Cognition

    Full text link
    Similar to oil that acted as a basic raw material and key driving force of industrial society, information acts as a raw material and principal mover of knowledge society in the knowledge production, propagation and application. New developments in information processing and information communication technologies allow increasingly complex and accurate descriptions, representations and models, which are often multi-parameter, multi-perspective, multi-level and multidimensional. This leads to the necessity of collaborative work between different domains with corresponding specialist competences, sciences and research traditions. We present several major transdisciplinary unification projects for information and knowledge, which proceed on the descriptive, logical and the level of generative mechanisms. Parallel process of boundary crossing and transdisciplinary activity is going on in the applied domains. Technological artifacts are becoming increasingly complex and their design is strongly user-centered, which brings in not only the function and various technological qualities but also other aspects including esthetic, user experience, ethics and sustainability with social and environmental dimensions. When integrating knowledge from a variety of fields, with contributions from different groups of stakeholders, numerous challenges are met in establishing common view and common course of action. In this context, information is our environment, and informational ecology determines both epistemology and spaces for action. We present some insights into the current state of the art of transdisciplinary theory and practice of information studies and informatics. We depict different facets of transdisciplinarity as we see it from our different research fields that include information studies, computability, human-computer interaction, multi-operating-systems environments and philosophy.Comment: Chapter in a forthcoming book: Information Studies and the Quest for Transdisciplinarity - Forthcoming book in World Scientific. Mark Burgin and Wolfgang Hofkirchner, Editor

    Complex Systems Science: Dreams of Universality, Reality of Interdisciplinarity

    Get PDF
    Using a large database (~ 215 000 records) of relevant articles, we empirically study the "complex systems" field and its claims to find universal principles applying to systems in general. The study of references shared by the papers allows us to obtain a global point of view on the structure of this highly interdisciplinary field. We show that its overall coherence does not arise from a universal theory but instead from computational techniques and fruitful adaptations of the idea of self-organization to specific systems. We also find that communication between different disciplines goes through specific "trading zones", ie sub-communities that create an interface around specific tools (a DNA microchip) or concepts (a network).Comment: Journal of the American Society for Information Science and Technology (2012) 10.1002/asi.2264

    Artificial life meets computational creativity?

    Get PDF
    I review the history of work in Artificial Life on the problem of the open-ended evolutionary growth of complexity in computational worlds. This is then put into the context of evolutionary epistemology and human creativity

    A précis of philosophy of computing and information technology

    Get PDF
    The authors recently finished a comprehensive chapter on “Philosophy of Computing and Information Technology” for the forthcoming (fall 2009) Philosophy of Technology and Engineering Sciences (Ed.: A. Meijers), Volume IX in the Elsevier series Handbook of the Philosophy of Science (Eds.: D. Gabbay, P. Thagard and J. Woods). The purpose of the chapter is to review and discuss the main developments, concepts, topics, and contributors in the intersection between philosophy and computing, as well as provide some suggestions on how to structure the many subcategories within what is loosely referred to as philosophy of computing. In this short synopsis, we will give an outline of the kinds of issues raised in this chapter

    Nanoinformatics: developing new computing applications for nanomedicine

    Get PDF
    Nanoinformatics has recently emerged to address the need of computing applications at the nano level. In this regard, the authors have participated in various initiatives to identify its concepts, foundations and challenges. While nanomaterials open up the possibility for developing new devices in many industrial and scientific areas, they also offer breakthrough perspectives for the prevention, diagnosis and treatment of diseases. In this paper, we analyze the different aspects of nanoinformatics and suggest five research topics to help catalyze new research and development in the area, particularly focused on nanomedicine. We also encompass the use of informatics to further the biological and clinical applications of basic research in nanoscience and nanotechnology, and the related concept of an extended ?nanotype? to coalesce information related to nanoparticles. We suggest how nanoinformatics could accelerate developments in nanomedicine, similarly to what happened with the Human Genome and other -omics projects, on issues like exchanging modeling and simulation methods and tools, linking toxicity information to clinical and personal databases or developing new approaches for scientific ontologies, among many others

    Large-Scale Analysis of the Accuracy of the Journal Classification Systems of Web of Science and Scopus

    Full text link
    Journal classification systems play an important role in bibliometric analyses. The two most important bibliographic databases, Web of Science and Scopus, each provide a journal classification system. However, no study has systematically investigated the accuracy of these classification systems. To examine and compare the accuracy of journal classification systems, we define two criteria on the basis of direct citation relations between journals and categories. We use Criterion I to select journals that have weak connections with their assigned categories, and we use Criterion II to identify journals that are not assigned to categories with which they have strong connections. If a journal satisfies either of the two criteria, we conclude that its assignment to categories may be questionable. Accordingly, we identify all journals with questionable classifications in Web of Science and Scopus. Furthermore, we perform a more in-depth analysis for the field of Library and Information Science to assess whether our proposed criteria are appropriate and whether they yield meaningful results. It turns out that according to our citation-based criteria Web of Science performs significantly better than Scopus in terms of the accuracy of its journal classification system
    corecore