25,070 research outputs found

    Design Strategies for Playful Technologies to Support Light-intensity Physical Activity in the Workplace

    Full text link
    Moderate to vigorous intensity physical activity has an established preventative role in obesity, cardiovascular disease, and diabetes. However recent evidence suggests that sitting time affects health negatively independent of whether adults meet prescribed physical activity guidelines. Since many of us spend long hours daily sitting in front of a host of electronic screens, this is cause for concern. In this paper, we describe a set of three prototype digital games created for encouraging light-intensity physical activity during short breaks at work. The design of these kinds of games is a complex process that must consider motivation strategies, interaction methodology, usability and ludic aspects. We present design guidelines for technologies that encourage physical activity in the workplace that we derived from a user evaluation using the prototypes. Although the design guidelines can be seen as general principles, we conclude that they have to be considered differently for different workplace cultures and workspaces. Our study was conducted with users who have some experience playing casual games on their mobile devices and were able and willing to increase their physical activity.Comment: 11 pages, 5 figures. Video: http://living.media.mit.edu/projects/see-saw

    MetaSpace II: Object and full-body tracking for interaction and navigation in social VR

    Full text link
    MetaSpace II (MS2) is a social Virtual Reality (VR) system where multiple users can not only see and hear but also interact with each other, grasp and manipulate objects, walk around in space, and get tactile feedback. MS2 allows walking in physical space by tracking each user's skeleton in real-time and allows users to feel by employing passive haptics i.e., when users touch or manipulate an object in the virtual world, they simultaneously also touch or manipulate a corresponding object in the physical world. To enable these elements in VR, MS2 creates a correspondence in spatial layout and object placement by building the virtual world on top of a 3D scan of the real world. Through the association between the real and virtual world, users are able to walk freely while wearing a head-mounted device, avoid obstacles like walls and furniture, and interact with people and objects. Most current virtual reality (VR) environments are designed for a single user experience where interactions with virtual objects are mediated by hand-held input devices or hand gestures. Additionally, users are only shown a representation of their hands in VR floating in front of the camera as seen from a first person perspective. We believe, representing each user as a full-body avatar that is controlled by natural movements of the person in the real world (see Figure 1d), can greatly enhance believability and a user's sense immersion in VR.Comment: 10 pages, 9 figures. Video: http://living.media.mit.edu/projects/metaspace-ii
    • …
    corecore