24,289 research outputs found

    Rapid and sensitive insulated isothermal PCR for point-of-need feline leukaemia virus detection

    Get PDF
    Objectives: Feline leukaemia virus (FeLV), a gamma retrovirus, causes diseases of the feline haematopoietic system that are invariably fatal. Rapid and accurate testing at the point-of-need (PON) supports prevention of virus spread and management of clinical disease. This study evaluated the performance of an insulated isothermal PCR (iiPCR) that detects proviral DNA, and a reverse transcription (RT)-iiPCR that detects both viral RNA and proviral DNA, for FeLV detection at the PON. Methods: Mycoplasma haemofelis, feline coronavirus, feline herpesvirus, feline calicivirus and feline immunodeficiency virus were used to test analytical specificity. In vitro transcribed RNA, artificial plasmid, FeLV strain American Type Culture Collection VR-719 and a clinical FeLV isolate were used in the analytical sensitivity assays. A retrospective study including 116 clinical plasma and serum samples that had been tested with virus isolation, real-time PCR and ELISA, and a prospective study including 150 clinical plasma and serum samples were implemented to evaluate the clinical performances of the iiPCR-based methods for FeLV detection. Results: Ninety-five percent assay limit of detection was calculated to be 16 RNA and five DNA copies for the RT-iiPCR, and six DNA copies for the iiPCR. Both reactions had analytical sensitivity comparable to a reference real-time PCR (qPCR) and did not detect five non-target feline pathogens. The clinical performance of the RT-iiPCR and iiPCR had 98.82% agreement (kappa[κ] = 0.97) and 100% agreement (κ = 1.0), respectively, with the qPCR (n = 85). The agreement between an automatic nucleic extraction/RT-iiPCR system and virus isolation to detect FeLV in plasma or serum was 95.69% (κ = 0.95) and 98.67% (κ = 0.85) in a retrospective (n = 116) and a prospective (n = 150) study, respectively. Conclusions and relevance: These results suggested that both RT-iiPCR and iiPCR assays can serve as reliable tools for PON FeLV detection

    Biosensors for cardiac biomarkers detection: a review

    Get PDF
    The cardiovascular disease (CVD) is considered as a major threat to global health. Therefore, there is a growing demand for a range of portable, rapid and low cost biosensing devices for the detection of CVD. Biosensors can play an important role in the early diagnosis of CVD without having to rely on hospital visits where expensive and time-consuming laboratory tests are recommended. Over the last decade, many biosensors have been developed to detect a wide range of cardiac marker to reduce the costs for healthcare. One of the major challenges is to find a way of predicting the risk that an individual can suffer from CVD. There has been considerable interest in finding diagnostic and prognostic biomarkers that can be detected in blood and predict CVD risk. Of these, C-reactive protein (CRP) is the best known biomarker followed by cardiac troponin I or T (cTnI/T), myoglobin, lipoprotein-associated phospholipase A(2), interlukin-6 (IL-6), interlukin-1 (IL-1), low-density lipoprotein (LDL), myeloperoxidase (MPO) and tumor necrosis factor alpha (TNF-α) has been used to predict cardiovascular events. This review provides an overview of the available biosensor platforms for the detection of various CVD markers and considerations of future prospects for the technology are addressed

    Technology utilization program report, 1974

    Get PDF
    The adaptation of various technological innovations from the NASA space program to industrial and domestic applications is summarized

    A Microfluidic Device for Single Cell Isolation

    Get PDF
    There exists a need for inexpensive and efficient methods to isolate single cells, especially single tumor cells for single cell analysis to improve treatment methods. We developed a microfluidic device that traps single beads ranging from 38 to 45 µm, similar to mammalian cells. Our results suggest our device could trap single beads in 60 µm microwells, indicating this device could allow isolation of similarly-sized cells. Our device could be used for pharmacological testing for personalized medicine and other applications

    Pathway to the PiezoElectronic Transduction Logic Device

    Full text link
    The information age challenges computer technology to process an exponentially increasing computational load on a limited energy budget - a requirement that demands an exponential reduction in energy per operation. In digital logic circuits, the switching energy of present FET devices is intimately connected with the switching voltage, and can no longer be lowered sufficiently, limiting the ability of current technology to address the challenge. Quantum computing offers a leap forward in capability, but a clear advantage requires algorithms presently developed for only a small set of applications. Therefore, a new, general purpose, classical technology based on a different paradigm is needed to meet the ever increasing demand for data processing.Comment: in Nano Letters (2015

    Design, simulation and fabrication of a mems in-situ contactless sensor to detect plasma induced damage during reactive ion etching

    Get PDF
    The present trend in the semiconductor industry is towards submicron devices. An inevitable process technique in achieving this is by reactive ion etching of the polysilicon gate. During RIE, the gate oxide may get damaged due to several causes. One of the main causes of the damage is the non-uniformity of the plasma. It is reported that these plasma inconsistencies are mainly due to electrode design and that they create spatial plasma potential fluctuation. These fluctuations are reported to be in the range of 10-20 Volts. By providing an in-situ monitoring of the wafers, the reliability of the device could be established. The purpose of this sensor is to detect the spatial fluctuations. It works on the principle of electrostatic forces. It is made of polysilicon (gate material) and consists of two cantilevers separated by 2μm constituting a parallel plate capacitor configuration. The design, simulation and fabrication of the sensor was carried out. The test results demonstrated that sensors with beam lengths 150μm, 200μm and 250μm deflect by 2μm at externally applied voltages of 65, 56, and 50 volts respectively. Optimized beam dimensions that would deflect by 1.2µm at an applied voltage of 20 Volts is estimated from the experimental results and has the following dimensions: length of the cantilever = 200μm, width = 2μm, the thickness = 1.6μm, and the space between the cantilevers is = 1.2μm

    The Boston University Photonics Center annual report 2014-2015

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundation– sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New York–based consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center

    The Boston University Photonics Center annual report 2014-2015

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundation– sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New York–based consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center

    Heater Control for Thermionic Power Generation

    Get PDF
    The purpose of this report is to detail the conceptualization, analysis, budget, manufacturing, and assembly the heater for a thermionic energy converter for portable energy generation. This proof of concept will be created to provide a full thermionic energy converter with a reliable and satisfactory heater than can be used in future systems. The report highlights the feasibility and realities in the design and fabrication of the system
    • …
    corecore