119,257 research outputs found

    Vehicle-Rear: A New Dataset to Explore Feature Fusion for Vehicle Identification Using Convolutional Neural Networks

    Full text link
    This work addresses the problem of vehicle identification through non-overlapping cameras. As our main contribution, we introduce a novel dataset for vehicle identification, called Vehicle-Rear, that contains more than three hours of high-resolution videos, with accurate information about the make, model, color and year of nearly 3,000 vehicles, in addition to the position and identification of their license plates. To explore our dataset we design a two-stream CNN that simultaneously uses two of the most distinctive and persistent features available: the vehicle's appearance and its license plate. This is an attempt to tackle a major problem: false alarms caused by vehicles with similar designs or by very close license plate identifiers. In the first network stream, shape similarities are identified by a Siamese CNN that uses a pair of low-resolution vehicle patches recorded by two different cameras. In the second stream, we use a CNN for OCR to extract textual information, confidence scores, and string similarities from a pair of high-resolution license plate patches. Then, features from both streams are merged by a sequence of fully connected layers for decision. In our experiments, we compared the two-stream network against several well-known CNN architectures using single or multiple vehicle features. The architectures, trained models, and dataset are publicly available at https://github.com/icarofua/vehicle-rear

    Recurrent Attention Models for Depth-Based Person Identification

    Get PDF
    We present an attention-based model that reasons on human body shape and motion dynamics to identify individuals in the absence of RGB information, hence in the dark. Our approach leverages unique 4D spatio-temporal signatures to address the identification problem across days. Formulated as a reinforcement learning task, our model is based on a combination of convolutional and recurrent neural networks with the goal of identifying small, discriminative regions indicative of human identity. We demonstrate that our model produces state-of-the-art results on several published datasets given only depth images. We further study the robustness of our model towards viewpoint, appearance, and volumetric changes. Finally, we share insights gleaned from interpretable 2D, 3D, and 4D visualizations of our model's spatio-temporal attention.Comment: Computer Vision and Pattern Recognition (CVPR) 201

    Deep Adaptive Learning for Writer Identification based on Single Handwritten Word Images

    Get PDF
    There are two types of information in each handwritten word image: explicit information which can be easily read or derived directly, such as lexical content or word length, and implicit attributes such as the author's identity. Whether features learned by a neural network for one task can be used for another task remains an open question. In this paper, we present a deep adaptive learning method for writer identification based on single-word images using multi-task learning. An auxiliary task is added to the training process to enforce the emergence of reusable features. Our proposed method transfers the benefits of the learned features of a convolutional neural network from an auxiliary task such as explicit content recognition to the main task of writer identification in a single procedure. Specifically, we propose a new adaptive convolutional layer to exploit the learned deep features. A multi-task neural network with one or several adaptive convolutional layers is trained end-to-end, to exploit robust generic features for a specific main task, i.e., writer identification. Three auxiliary tasks, corresponding to three explicit attributes of handwritten word images (lexical content, word length and character attributes), are evaluated. Experimental results on two benchmark datasets show that the proposed deep adaptive learning method can improve the performance of writer identification based on single-word images, compared to non-adaptive and simple linear-adaptive approaches.Comment: Under view of Pattern Recognitio

    Express Prediction Of External Distinctive Features Of Person Using The Program Of Dermatoglyphics For Prediction

    Get PDF
    The aim of our study was to investigate the current state of computer identification applications, such as artificial neural networks. The material of our study were antroposcopic and anthropometric parameters obtained from 180 male and females aged 18–55 years living in the Ivano-Frankivsk region and belonging to Boiko, Lemko or Hutsul ethno-territorial group. Prints of comb pattern of the toes obtained by scanning with Futronic\u27s FS80 USB2.0 Fingerprint Scanner using the program ftrScanApiEx.exe. followed by the transfer of data to a personal computer. For statistical processing of the obtained data we use STATISTICA 12 from the company StatSoft. Construction of neural networks was carried out using Neural Networks. As a result of our research there was carried out the prediction of anthropometric and antroposcopic parameters (ethno-territorial and gender belonging, etc.) through the use of dermatoglyphic parameters of the hands and feet in 180 people living in the Ivano-Frankivsk region. The proposed method allowed to obtain the results with a forecasts probability 73–90 %. The use of above algorithm of actions allowed a 50 % increase of quality of identification of unknown person for using dermatoglyphic method and 67 % facilitatation of the process of identification (of quantitative and qualitative calculations, determining correlations between parameters) in comparison with previously known manner. Therefore, our proposed method can be used as an express diagnostics of common phenotypic traits of the person (ethno-territorial affiliation, gender, etc.) at admission of mass victims (natural disasters, acts of terrorism, armed conflicts, man-made disasters, etc.), it doesn\u27t not require a long time for conducting, specially trained staff and is inexpensive.Conclusions: The possibility of predicting external-recognizing features of a person such as etno-racial belonging, sex, anthropometric and antroposcopic parameters will allow widely use dermatoglyphic method at the level with other methods in conducting forensic identification of impersonal, fragmented and putrefactive modified corpses

    Challenges in identifying and interpreting organizational modules in morphology

    Get PDF
    Form is a rich concept that agglutinates information about the proportions and topological arrangement of body parts. Modularity is readily measurable in both features, the variation of proportions (variational modules) and the organization of topology (organizational modules). The study of variational modularity and of organizational modularity faces similar challenges regarding the identification of meaningful modules and the validation of generative processes; however, most studies in morphology focus solely on variational modularity, while organizational modularity is much less understood. A possible cause for this bias is the successful development in the last twenty years of morphometrics, and specially geometric morphometrics, to study patters of variation. This contrasts with the lack of a similar mathematical framework to deal with patterns of organization. Recently, a new mathematical framework has been proposed to study the organization of gross anatomy using tools from Network Theory, so‐called Anatomical Network Analysis (AnNA). In this essay, I explore the potential use of this new framework—and the challenges it faces in identifying and validating biologically meaningful modules in morphological systems—by providing working examples of a complete analysis of modularity of the human skull and upper limb. Finally, I suggest further directions of research that may bridge the gap between variational and organizational modularity studies, and discuss how alternative modeling strategies of morphological systems using networks can benefit from each other

    Towards Automatic Speech Identification from Vocal Tract Shape Dynamics in Real-time MRI

    Full text link
    Vocal tract configurations play a vital role in generating distinguishable speech sounds, by modulating the airflow and creating different resonant cavities in speech production. They contain abundant information that can be utilized to better understand the underlying speech production mechanism. As a step towards automatic mapping of vocal tract shape geometry to acoustics, this paper employs effective video action recognition techniques, like Long-term Recurrent Convolutional Networks (LRCN) models, to identify different vowel-consonant-vowel (VCV) sequences from dynamic shaping of the vocal tract. Such a model typically combines a CNN based deep hierarchical visual feature extractor with Recurrent Networks, that ideally makes the network spatio-temporally deep enough to learn the sequential dynamics of a short video clip for video classification tasks. We use a database consisting of 2D real-time MRI of vocal tract shaping during VCV utterances by 17 speakers. The comparative performances of this class of algorithms under various parameter settings and for various classification tasks are discussed. Interestingly, the results show a marked difference in the model performance in the context of speech classification with respect to generic sequence or video classification tasks.Comment: To appear in the INTERSPEECH 2018 Proceeding
    • 

    corecore