6,132 research outputs found

    Personalizing gesture recognition using hierarchical bayesian neural networks

    Full text link
    Building robust classifiers trained on data susceptible to group or subject-specific variations is a challenging pattern recognition problem. We develop hierarchical Bayesian neural networks to capture subject-specific variations and share statistical strength across subjects. Leveraging recent work on learning Bayesian neural networks, we build fast, scalable algorithms for inferring the posterior distribution over all network weights in the hierarchy. We also develop methods for adapting our model to new subjects when a small number of subject-specific personalization data is available. Finally, we investigate active learning algorithms for interactively labeling personalization data in resource-constrained scenarios. Focusing on the problem of gesture recognition where inter-subject variations are commonplace, we demonstrate the effectiveness of our proposed techniques. We test our framework on three widely used gesture recognition datasets, achieving personalization performance competitive with the state-of-the-art.http://openaccess.thecvf.com/content_cvpr_2017/html/Joshi_Personalizing_Gesture_Recognition_CVPR_2017_paper.htmlhttp://openaccess.thecvf.com/content_cvpr_2017/html/Joshi_Personalizing_Gesture_Recognition_CVPR_2017_paper.htmlhttp://openaccess.thecvf.com/content_cvpr_2017/html/Joshi_Personalizing_Gesture_Recognition_CVPR_2017_paper.htmlPublished versio

    An original framework for understanding human actions and body language by using deep neural networks

    Get PDF
    The evolution of both fields of Computer Vision (CV) and Artificial Neural Networks (ANNs) has allowed the development of efficient automatic systems for the analysis of people's behaviour. By studying hand movements it is possible to recognize gestures, often used by people to communicate information in a non-verbal way. These gestures can also be used to control or interact with devices without physically touching them. In particular, sign language and semaphoric hand gestures are the two foremost areas of interest due to their importance in Human-Human Communication (HHC) and Human-Computer Interaction (HCI), respectively. While the processing of body movements play a key role in the action recognition and affective computing fields. The former is essential to understand how people act in an environment, while the latter tries to interpret people's emotions based on their poses and movements; both are essential tasks in many computer vision applications, including event recognition, and video surveillance. In this Ph.D. thesis, an original framework for understanding Actions and body language is presented. The framework is composed of three main modules: in the first one, a Long Short Term Memory Recurrent Neural Networks (LSTM-RNNs) based method for the Recognition of Sign Language and Semaphoric Hand Gestures is proposed; the second module presents a solution based on 2D skeleton and two-branch stacked LSTM-RNNs for action recognition in video sequences; finally, in the last module, a solution for basic non-acted emotion recognition by using 3D skeleton and Deep Neural Networks (DNNs) is provided. The performances of RNN-LSTMs are explored in depth, due to their ability to model the long term contextual information of temporal sequences, making them suitable for analysing body movements. All the modules were tested by using challenging datasets, well known in the state of the art, showing remarkable results compared to the current literature methods

    Interactive Robot Learning of Gestures, Language and Affordances

    Full text link
    A growing field in robotics and Artificial Intelligence (AI) research is human-robot collaboration, whose target is to enable effective teamwork between humans and robots. However, in many situations human teams are still superior to human-robot teams, primarily because human teams can easily agree on a common goal with language, and the individual members observe each other effectively, leveraging their shared motor repertoire and sensorimotor resources. This paper shows that for cognitive robots it is possible, and indeed fruitful, to combine knowledge acquired from interacting with elements of the environment (affordance exploration) with the probabilistic observation of another agent's actions. We propose a model that unites (i) learning robot affordances and word descriptions with (ii) statistical recognition of human gestures with vision sensors. We discuss theoretical motivations, possible implementations, and we show initial results which highlight that, after having acquired knowledge of its surrounding environment, a humanoid robot can generalize this knowledge to the case when it observes another agent (human partner) performing the same motor actions previously executed during training.Comment: code available at https://github.com/gsaponaro/glu-gesture

    Fair comparison of skin detection approaches on publicly available datasets

    Full text link
    Skin detection is the process of discriminating skin and non-skin regions in a digital image and it is widely used in several applications ranging from hand gesture analysis to track body parts and face detection. Skin detection is a challenging problem which has drawn extensive attention from the research community, nevertheless a fair comparison among approaches is very difficult due to the lack of a common benchmark and a unified testing protocol. In this work, we investigate the most recent researches in this field and we propose a fair comparison among approaches using several different datasets. The major contributions of this work are an exhaustive literature review of skin color detection approaches, a framework to evaluate and combine different skin detector approaches, whose source code is made freely available for future research, and an extensive experimental comparison among several recent methods which have also been used to define an ensemble that works well in many different problems. Experiments are carried out in 10 different datasets including more than 10000 labelled images: experimental results confirm that the best method here proposed obtains a very good performance with respect to other stand-alone approaches, without requiring ad hoc parameter tuning. A MATLAB version of the framework for testing and of the methods proposed in this paper will be freely available from https://github.com/LorisNann
    • …
    corecore