150 research outputs found

    A neuro-genetic hybrid approach to automatic identification of plant leaves

    Get PDF
    Plants are essential for the existence of most living things on this planet. Plants are used for providing food, shelter, and medicine. The ability to identify plants is very important for several applications, including conservation of endangered plant species, rehabilitation of lands after mining activities and differentiating crop plants from weeds. In recent times, many researchers have made attempts to develop automated plant species recognition systems. However, the current computer-based plants recognition systems have limitations as some plants are naturally complex, thus it is difficult to extract and represent their features. Further, natural differences of features within the same plant and similarities between plants of different species cause problems in classification. This thesis developed a novel hybrid intelligent system based on a neuro-genetic model for automatic recognition of plants using leaf image analysis based on novel approach of combining several image descriptors with Cellular Neural Networks (CNN), Genetic Algorithm (GA), and Probabilistic Neural Networks (PNN) to address classification challenges in plant computer-based plant species identification using the images of plant leaves. A GA-based feature selection module was developed to select the best of these leaf features. Particle Swam Optimization (PSO) and Principal Component Analysis (PCA) were also used sideways for comparison and to provide rigorous feature selection and analysis. Statistical analysis using ANOVA and correlation techniques confirmed the effectiveness of the GA-based and PSO-based techniques as there were no redundant features, since the subset of features selected by both techniques correlated well. The number of principal components (PC) from the past were selected by conventional method associated with PCA. However, in this study, GA was used to select a minimum number of PC from the original PC space. This reduced computational cost with respect to time and increased the accuracy of the classifier used. The algebraic nature of the GA’s fitness function ensures good performance of the GA. Furthermore, GA was also used to optimize the parameters of a CNN (CNN for image segmentation) and then uniquely combined with PNN to improve and stabilize the performance of the classification system. The CNN (being an ordinary differential equation (ODE)) was solved using Runge-Kutta 4th order algorithm in order to minimize descritisation errors associated with edge detection. This study involved the extraction of 112 features from the images of plant species found in the Flavia dataset (publically available) using MATLAB programming environment. These features include Zernike Moments (20 ZMs), Fourier Descriptors (21 FDs), Legendre Moments (20 LMs), Hu 7 Moments (7 Hu7Ms), Texture Properties (22 TP) , Geometrical Properties (10 GP), and Colour features (12 CF). With the use of GA, only 14 features were finally selected for optimal accuracy. The PNN was genetically optimized to ensure optimal accuracy since it is not the best practise to fix the tunning parameters for the PNN arbitrarily. Two separate GA algorithms were implemented to optimize the PNN, that is, the GA provided by MATLAB Optimization Toolbox (GA1) and a separately implemented GA (GA2). The best chromosome (PNN spread) for GA1 was 0.035 with associated classification accuracy of 91.3740% while a spread value of 0.06 was obtained from GA2 giving rise to improved classification accuracy of 92.62%. The PNN-based classifier used in this study was benchmarked against other classifiers such as Multi-layer perceptron (MLP), K Nearest Neigbhour (kNN), Naive Bayes Classifier (NBC), Radial Basis Function (RBF), Ensemble classifiers (Adaboost). The best candidate among these classifiers was the genetically optimized PNN. Some computational theoretic properties on PNN are also presented

    A Novel Algorithm to Tackle Eyeglasses and Beard Issues in Facial IR Recognition

    Get PDF
    Face recognition via thermal infrared (IR) images is a modern recognition method that has found so interesting for many researchers during last decade. This method which operates via thermal features and the situation of human face vessels has much more benefits than visual-based methods. In these images, the changes of environmental light, which is one of the most important problems of face recognition via visual images, are completely eliminated. The most important face recognition problem via thermal IR images is the existence of diffusion obstacles like glasses, which blocks an accurate extraction of the face vessels situation. Using the proposed algorithm, this problem has been completely removed. In this article face recognition is performed through face vessels. In fact, the proposed method solves the issues of face recognition (like glasses wearing) in the thermal infrared domain suggested by Pavlidis et al in [5]. For extraction of the face features, the situation of vessel branches is used. Also, by choosing appropriate classification, fake vessels and false branches are removed. On the other hand, the best feature is extracted by using Dynamic Time Wrapping (DTW) algorithm which is resistant to nonlinear changes. The simulation on UTK-IRIS gallery set shows the accurate recognition rate 95% on the images with glasses. Thus, the proposed method has improved the recognition rate about 10% on same gallery set compared to the best other methods

    On incorporating inductive biases into deep neural networks

    Get PDF
    A machine learning (ML) algorithm can be interpreted as a system that learns to capture patterns in data distributions. Before the modern \emph{deep learning era}, emulating the human brain, the use of structured representations and strong inductive bias have been prevalent in building ML models, partly due to the expensive computational resources and the limited availability of data. On the contrary, armed with increasingly cheaper hardware and abundant data, deep learning has made unprecedented progress during the past decade, showcasing incredible performance on a diverse set of ML tasks. In contrast to \emph{classical ML} models, the latter seeks to minimize structured representations and inductive bias when learning, implicitly favoring the flexibility of learning over manual intervention. Despite the impressive performance, attention is being drawn towards enhancing the (relatively) weaker areas of deep models such as learning with limited resources, robustness, minimal overhead to realize simple relationships, and ability to generalize the learned representations beyond the training conditions, which were (arguably) the forte of classical ML. Consequently, a recent hybrid trend is surfacing that aims to blend structured representations and substantial inductive bias into deep models, with the hope of improving them. Based on the above motivation, this thesis investigates methods to improve the performance of deep models using inductive bias and structured representations across multiple problem domains. To this end, we inject a priori knowledge into deep models in the form of enhanced feature extraction techniques, geometrical priors, engineered features, and optimization constraints. Especially, we show that by leveraging the prior knowledge about the task in hand and the structure of data, the performance of deep learning models can be significantly elevated. We begin by exploring equivariant representation learning. In general, the real-world observations are prone to fundamental transformations (e.g., translation, rotation), and deep models typically demand expensive data-augmentations and a high number of filters to tackle such variance. In comparison, carefully designed equivariant filters possess this ability by nature. Henceforth, we propose a novel \emph{volumetric convolution} operation that can convolve arbitrary functions in the unit-ball (B3\mathbb{B}^3) while preserving rotational equivariance by projecting the input data onto the Zernike basis. We conduct extensive experiments and show that our formulations can be used to construct significantly cheaper ML models. Next, we study generative modeling of 3D objects and propose a principled approach to synthesize 3D point-clouds in the spectral-domain by obtaining a structured representation of 3D points as functions on the unit sphere (S2\mathbb{S}^2). Using the prior knowledge about the spectral moments and the output data manifold, we design an architecture that can maximally utilize the information in the inputs and generate high-resolution point-clouds with minimal computational overhead. Finally, we propose a framework to build normalizing flows (NF) based on increasing triangular maps and Bernstein-type polynomials. Compared to the existing NF approaches, our framework consists of favorable characteristics for fusing inductive bias within the model i.e., theoretical upper bounds for the approximation error, robustness, higher interpretability, suitability for compactly supported densities, and the ability to employ higher degree polynomials without training instability. Most importantly, we present a constructive universality proof, which permits us to analytically derive the optimal model coefficients for known transformations without training

    Distortion Robust Biometric Recognition

    Get PDF
    abstract: Information forensics and security have come a long way in just a few years thanks to the recent advances in biometric recognition. The main challenge remains a proper design of a biometric modality that can be resilient to unconstrained conditions, such as quality distortions. This work presents a solution to face and ear recognition under unconstrained visual variations, with a main focus on recognition in the presence of blur, occlusion and additive noise distortions. First, the dissertation addresses the problem of scene variations in the presence of blur, occlusion and additive noise distortions resulting from capture, processing and transmission. Despite their excellent performance, ’deep’ methods are susceptible to visual distortions, which significantly reduce their performance. Sparse representations, on the other hand, have shown huge potential capabilities in handling problems, such as occlusion and corruption. In this work, an augmented SRC (ASRC) framework is presented to improve the performance of the Spare Representation Classifier (SRC) in the presence of blur, additive noise and block occlusion, while preserving its robustness to scene dependent variations. Different feature types are considered in the performance evaluation including image raw pixels, HoG and deep learning VGG-Face. The proposed ASRC framework is shown to outperform the conventional SRC in terms of recognition accuracy, in addition to other existing sparse-based methods and blur invariant methods at medium to high levels of distortion, when particularly used with discriminative features. In order to assess the quality of features in improving both the sparsity of the representation and the classification accuracy, a feature sparse coding and classification index (FSCCI) is proposed and used for feature ranking and selection within both the SRC and ASRC frameworks. The second part of the dissertation presents a method for unconstrained ear recognition using deep learning features. The unconstrained ear recognition is performed using transfer learning with deep neural networks (DNNs) as a feature extractor followed by a shallow classifier. Data augmentation is used to improve the recognition performance by augmenting the training dataset with image transformations. The recognition performance of the feature extraction models is compared with an ensemble of fine-tuned networks. The results show that, in the case where long training time is not desirable or a large amount of data is not available, the features from pre-trained DNNs can be used with a shallow classifier to give a comparable recognition accuracy to the fine-tuned networks.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Computational imaging and automated identification for aqueous environments

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2011Sampling the vast volumes of the ocean requires tools capable of observing from a distance while retaining detail necessary for biology and ecology, ideal for optical methods. Algorithms that work with existing SeaBED AUV imagery are developed, including habitat classi fication with bag-of-words models and multi-stage boosting for rock sh detection. Methods for extracting images of sh from videos of longline operations are demonstrated. A prototype digital holographic imaging device is designed and tested for quantitative in situ microscale imaging. Theory to support the device is developed, including particle noise and the effects of motion. A Wigner-domain model provides optimal settings and optical limits for spherical and planar holographic references. Algorithms to extract the information from real-world digital holograms are created. Focus metrics are discussed, including a novel focus detector using local Zernike moments. Two methods for estimating lateral positions of objects in holograms without reconstruction are presented by extending a summation kernel to spherical references and using a local frequency signature from a Riesz transform. A new metric for quickly estimating object depths without reconstruction is proposed and tested. An example application, quantifying oil droplet size distributions in an underwater plume, demonstrates the efficacy of the prototype and algorithms.Funding was provided by NOAA Grant #5710002014, NOAA NMFS Grant #NA17RJ1223, NSF Grant #OCE-0925284, and NOAA Grant #NA10OAR417008

    Object Recognition

    Get PDF
    Vision-based object recognition tasks are very familiar in our everyday activities, such as driving our car in the correct lane. We do these tasks effortlessly in real-time. In the last decades, with the advancement of computer technology, researchers and application developers are trying to mimic the human's capability of visually recognising. Such capability will allow machine to free human from boring or dangerous jobs

    Modelling Visual Objects Regardless of Depictive Style

    Get PDF
    • …
    corecore