2,250 research outputs found

    Random Weighting, Asymptotic Counting, and Inverse Isoperimetry

    Full text link
    For a family X of k-subsets of the set 1,...,n, let |X| be the cardinality of X and let Gamma(X,mu) be the expected maximum weight of a subset from X when the weights of 1,...,n are chosen independently at random from a symmetric probability distribution mu on R. We consider the inverse isoperimetric problem of finding mu for which Gamma(X,mu) gives the best estimate of ln|X|. We prove that the optimal choice of mu is the logistic distribution, in which case Gamma(X,mu) provides an asymptotically tight estimate of ln|X| as k^{-1}ln|X| grows. Since in many important cases Gamma(X,mu) can be easily computed, we obtain computationally efficient approximation algorithms for a variety of counting problems. Given mu, we describe families X of a given cardinality with the minimum value of Gamma(X,mu), thus extending and sharpening various isoperimetric inequalities in the Boolean cube.Comment: The revision contains a new isoperimetric theorem, some other improvements and extensions; 29 pages, 1 figur

    A Combinatorial Algorithm for All-Pairs Shortest Paths in Directed Vertex-Weighted Graphs with Applications to Disc Graphs

    Full text link
    We consider the problem of computing all-pairs shortest paths in a directed graph with real weights assigned to vertices. For an nΓ—nn\times n 0-1 matrix C,C, let KCK_{C} be the complete weighted graph on the rows of CC where the weight of an edge between two rows is equal to their Hamming distance. Let MWT(C)MWT(C) be the weight of a minimum weight spanning tree of KC.K_{C}. We show that the all-pairs shortest path problem for a directed graph GG on nn vertices with nonnegative real weights and adjacency matrix AGA_G can be solved by a combinatorial randomized algorithm in time O~(n2n+min⁑{MWT(AG),MWT(AGt)})\widetilde{O}(n^{2}\sqrt {n + \min\{MWT(A_G), MWT(A_G^t)\}}) As a corollary, we conclude that the transitive closure of a directed graph GG can be computed by a combinatorial randomized algorithm in the aforementioned time. O~(n2n+min⁑{MWT(AG),MWT(AGt)})\widetilde{O}(n^{2}\sqrt {n + \min\{MWT(A_G), MWT(A_G^t)\}}) We also conclude that the all-pairs shortest path problem for uniform disk graphs, with nonnegative real vertex weights, induced by point sets of bounded density within a unit square can be solved in time O~(n2.75)\widetilde{O}(n^{2.75})

    On active and passive testing

    Full text link
    Given a property of Boolean functions, what is the minimum number of queries required to determine with high probability if an input function satisfies this property or is "far" from satisfying it? This is a fundamental question in Property Testing, where traditionally the testing algorithm is allowed to pick its queries among the entire set of inputs. Balcan, Blais, Blum and Yang have recently suggested to restrict the tester to take its queries from a smaller random subset of polynomial size of the inputs. This model is called active testing, and in the extreme case when the size of the set we can query from is exactly the number of queries performed it is known as passive testing. We prove that passive or active testing of k-linear functions (that is, sums of k variables among n over Z_2) requires Theta(k*log n) queries, assuming k is not too large. This extends the case k=1, (that is, dictator functions), analyzed by Balcan et. al. We also consider other classes of functions including low degree polynomials, juntas, and partially symmetric functions. Our methods combine algebraic, combinatorial, and probabilistic techniques, including the Talagrand concentration inequality and the Erdos--Rado theorem on Delta-systems.Comment: 16 page
    • …
    corecore