543 research outputs found

    New bounds on even cycle creating Hamiltonian paths using expander graphs

    Get PDF
    We say that two graphs on the same vertex set are GG-creating if their union (the union of their edges) contains GG as a subgraph. Let Hn(G)H_n(G) be the maximum number of pairwise GG-creating Hamiltonian paths of KnK_n. Cohen, Fachini and K\"orner proved n12no(n)Hn(C4)n34n+o(n).n^{\frac{1}{2}n-o(n)}\leq H_n(C_4) \leq n^{\frac{3}{4}n+o(n)}. In this paper we close the superexponential gap between their lower and upper bounds by proving n12n12nlognO(1)Hn(C4)n12n+o(nlogn).n^{\frac{1}{2}n-\frac{1}{2}\frac{n}{\log{n}}-O(1)}\leq H_n(C_4) \leq n^{\frac{1}{2}n+o\left(\frac{n}{\log{n}} \right)}. We also improve the previously established upper bounds on Hn(C2k)H_n(C_{2k}) for k>3k>3, and we present a small improvement on the lower bound of F\"uredi, Kantor, Monti and Sinaimeri on the maximum number of so-called pairwise reversing permutations. One of our main tools is a theorem of Krivelevich, which roughly states that (certain kinds of) good expanders contain many Hamiltonian paths.Comment: 14 pages, LaTeX2e; v2: updated Footnote 1 on Page 5; v3: revised version incorporating suggestions by the referees (the changes are mainly in Section 5); v4: final version to appear in Combinatoric

    New bounds on even cycle creating Hamiltonian paths using expander graphs

    Full text link
    We say that two graphs on the same vertex set are GG-creating if their union (the union of their edges) contains GG as a subgraph. Let Hn(G)H_n(G) be the maximum number of pairwise GG-creating Hamiltonian paths of KnK_n. Cohen, Fachini and K\"orner proved n12no(n)Hn(C4)n34n+o(n).n^{\frac{1}{2}n-o(n)}\leq H_n(C_4) \leq n^{\frac{3}{4}n+o(n)}. In this paper we close the superexponential gap between their lower and upper bounds by proving n12n12nlognO(1)Hn(C4)n12n+o(nlogn).n^{\frac{1}{2}n-\frac{1}{2}\frac{n}{\log{n}}-O(1)}\leq H_n(C_4) \leq n^{\frac{1}{2}n+o\left(\frac{n}{\log{n}} \right)}. We also improve the previously established upper bounds on Hn(C2k)H_n(C_{2k}) for k>3k>3, and we present a small improvement on the lower bound of F\"uredi, Kantor, Monti and Sinaimeri on the maximum number of so-called pairwise reversing permutations. One of our main tools is a theorem of Krivelevich, which roughly states that (certain kinds of) good expanders contain many Hamiltonian paths.Comment: 14 pages, LaTeX2e; v2: updated Footnote 1 on Page 5; v3: revised version incorporating suggestions by the referees (the changes are mainly in Section 5); v4: final version to appear in Combinatoric

    On hamiltonian colorings of block graphs

    Full text link
    A hamiltonian coloring c of a graph G of order p is an assignment of colors to the vertices of G such that D(u,v)+c(u)c(v)p1D(u,v)+|c(u)-c(v)|\geq p-1 for every two distinct vertices u and v of G, where D(u,v) denoted the detour distance between u and v. The value hc(c) of a hamiltonian coloring c is the maximum color assigned to a vertex of G. The hamiltonian chromatic number, denoted by hc(G), is the min{hc(c)} taken over all hamiltonian coloring c of G. In this paper, we present a lower bound for the hamiltonian chromatic number of block graphs and give a sufficient condition to achieve the lower bound. We characterize symmetric block graphs achieving this lower bound. We present two algorithms for optimal hamiltonian coloring of symmetric block graphs.Comment: 12 pages, 1 figure. A conference version appeared in the proceedings of WALCOM 201

    Recent trends and future directions in vertex-transitive graphs

    Get PDF
    A graph is said to be vertex-transitive if its automorphism group acts transitively on the vertex set. Some recent developments and possible future directions regarding two famous open problems, asking about existence of Hamilton paths and existence of semiregular automorphisms in vertex-transitive graphs, are discussed, together with some recent results on arc-transitive graphs and half-arc-transitive graphs, two special classes of vertex-transitive graphs that have received particular attention over the last decade
    corecore