639 research outputs found

    On prisms, M\"obius ladders and the cycle space of dense graphs

    Full text link
    For a graph X, let f_0(X) denote its number of vertices, d(X) its minimum degree and Z_1(X;Z/2) its cycle space in the standard graph-theoretical sense (i.e. 1-dimensional cycle group in the sense of simplicial homology theory with Z/2-coefficients). Call a graph Hamilton-generated if and only if the set of all Hamilton circuits is a Z/2-generating system for Z_1(X;Z/2). The main purpose of this paper is to prove the following: for every s > 0 there exists n_0 such that for every graph X with f_0(X) >= n_0 vertices, (1) if d(X) >= (1/2 + s) f_0(X) and f_0(X) is odd, then X is Hamilton-generated, (2) if d(X) >= (1/2 + s) f_0(X) and f_0(X) is even, then the set of all Hamilton circuits of X generates a codimension-one subspace of Z_1(X;Z/2), and the set of all circuits of X having length either f_0(X)-1 or f_0(X) generates all of Z_1(X;Z/2), (3) if d(X) >= (1/4 + s) f_0(X) and X is square bipartite, then X is Hamilton-generated. All these degree-conditions are essentially best-possible. The implications in (1) and (2) give an asymptotic affirmative answer to a special case of an open conjecture which according to [European J. Combin. 4 (1983), no. 3, p. 246] originates with A. Bondy.Comment: 33 pages; 5 figure

    3nj Morphogenesis and Semiclassical Disentangling

    Full text link
    Recoupling coefficients (3nj symbols) are unitary transformations between binary coupled eigenstates of N=(n+1) mutually commuting SU(2) angular momentum operators. They have been used in a variety of applications in spectroscopy, quantum chemistry and nuclear physics and quite recently also in quantum gravity and quantum computing. These coefficients, naturally associated to cubic Yutsis graphs, share a number of intriguing combinatorial, algebraic, and analytical features that make them fashinating objects to be studied on their own. In this paper we develop a bottom--up, systematic procedure for the generation of 3nj from 3(n-1)j diagrams by resorting to diagrammatical and algebraic methods. We provide also a novel approach to the problem of classifying various regimes of semiclassical expansions of 3nj coefficients (asymptotic disentangling of 3nj diagrams) for n > 2 by means of combinatorial, analytical and numerical tools

    Traversing Every Edge in Each Direction Once, But Not at Once: Cubic (Polyhedral) Graphs

    Full text link
    A {\em retracting-free bidirectional circuit} in a graph GG is a closed walk which traverses every edge exactly once in each direction and such that no edge is succeeded by the same edge in the opposite direction. Such a circuit revisits each vertex only in a number of steps. Studying the class Ω\mathit{\Omega} of all graphs admitting at least one retracting-free bidirectional circuit was proposed by Ore (1951) and is by now of practical use to nanotechnology. The latter needs in various molecular polyhedra that are constructed from a single chain molecule in the retracting-free way. Some earlier results for simple graphs, obtained by Thomassen and, then, by other authors, are specially refined by us for a cubic graph QQ. Most of such refinements depend only on the number nn of vertices of QQ

    Dynamically manipulating topological physics and edge modes in a single degenerate optical cavity

    Get PDF
    We propose a scheme to simulate topological physics within a single degenerate cavity, whose modes are mapped to lattice sites. A crucial ingredient of the scheme is to construct a sharp boundary so that the open boundary condition can be implemented for this effective lattice system. In doing so, the topological properties of the system can manifest themselves on the edge states, which can be probed from the spectrum of an output cavity field. We demonstrate this with two examples: a static Su-Schrieffer-Heeger chain and a periodically driven Floquet topological insulator. Our work opens up new avenues to explore exotic photonic topological phases inside a single optical cavity.Comment: 6 pages, 5 figure

    Experimental measurement-based quantum computing beyond the cluster-state model

    Full text link
    The paradigm of measurement-based quantum computation opens new experimental avenues to realize a quantum computer and deepens our understanding of quantum physics. Measurement-based quantum computation starts from a highly entangled universal resource state. For years, clusters states have been the only known universal resources. Surprisingly, a novel framework namely quantum computation in correlation space has opened new routes to implement measurement-based quantum computation based on quantum states possessing entanglement properties different from cluster states. Here we report an experimental demonstration of every building block of such a model. With a four-qubit and a six-qubit state as distinct from cluster states, we have realized a universal set of single-qubit rotations, two-qubit entangling gates and further Deutsch's algorithm. Besides being of fundamental interest, our experiment proves in-principle the feasibility of universal measurement-based quantum computation without using cluster states, which represents a new approach towards the realization of a quantum computer.Comment: 26 pages, final version, comments welcom
    corecore