9 research outputs found

    Normal Domains Arising from Graph Theory

    Get PDF
    Determining whether an arbitrary subring R of k[x1±1,...,xn±1] is a normal domain is, in general, a nontrivial problem, even in the special case of a monomial generated domain. First, we determine normality in the case where R is a monomial generated domain where the generators have the form (xixj)±1. Using results for this special case we generalize to the case when R is a monomial generated domain where the generators have the form xi±1xj±1. In both cases, for the ring R, we consider the combinatorial structure that assigns an edge in a mixed directed signed graph to each monomial of the ring. We then use this relationship to provide a combinatorial characterization of the normality of R, and, when R is not normal, we use the combinatorial characterization to compute the normalization of R. Using this construction, we also determine when the ring R satisfies Serre\u27s R1 condition. We also discuss generalizations of this to directed graphs with a homogenizing variable and a special class of hypergraphs

    Acta Scientiarum Mathematicarum : Tomus 37. Fasc. 1-2.

    Get PDF

    Subject Index Volumes 1–200

    Get PDF

    Probabilistic Arguments in Mathematics

    Get PDF
    This thesis addresses a question that emerges naturally from some observations about contemporary mathematical practice. Firstly, mathematicians always demand proof for the acceptance of new results. Secondly, the ability of mathematicians to tell if a discourse gives expression to a proof is less than perfect, and the computers they use are subject to a variety of hardware and software failures. So false results are sometimes accepted, despite insistence on proof. Thirdly, over the past few decades, researchers have also developed a variety of methods that are probabilistic in nature. Even if carried out perfectly, these procedures only yield a conclusion that is very likely to be true. In some cases, these chances of error are precisely specifiable and can be made as small as desired. The likelihood of an error arising from the inherently uncertain nature of these probabilistic algorithms can therefore be made vanishingly small in comparison to the chances of an error arising when implementing an equivalent deductive algorithm. Moreover, the structure of probabilistic algorithms tends to minimise these Implementation Errors too. So overall, probabilistic methods are sometimes more reliable than deductive ones. This invites the question: ‘Are mathematicians rational in continuing to reject these probabilistic methods as a means of establishing mathematical claims?

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Acta Scientiarum Mathematicarum : Tomus 41. Fasc. 1-2.

    Get PDF
    corecore