862 research outputs found

    Hamiltonian interpolation of splitting approximations for nonlinear PDEs

    Full text link
    We consider a wide class of semi linear Hamiltonian partial differential equa- tions and their approximation by time splitting methods. We assume that the nonlinearity is polynomial, and that the numerical tra jectory remains at least uni- formly integrable with respect to an eigenbasis of the linear operator (typically the Fourier basis). We show the existence of a modified interpolated Hamiltonian equation whose exact solution coincides with the discrete flow at each time step over a long time depending on a non resonance condition satisfied by the stepsize. We introduce a class of modified splitting schemes fulfilling this condition at a high order and prove for them that the numerical flow and the continuous flow remain close over exponentially long time with respect to the step size. For stan- dard splitting or implicit-explicit scheme, such a backward error analysis result holds true on a time depending on a cut-off condition in the high frequencies (CFL condition). This analysis is valid in the case where the linear operator has a discrete (bounded domain) or continuous (the whole space) spectrum

    Hamiltonian interpolation of splitting approximations for nonlinear PDEs

    Get PDF
    International audienceWe consider a wide class of semi linear Hamiltonian partial differential equa- tions and their approximation by time splitting methods. We assume that the nonlinearity is polynomial, and that the numerical tra jectory remains at least uni- formly integrable with respect to an eigenbasis of the linear operator (typically the Fourier basis). We show the existence of a modified interpolated Hamiltonian equation whose exact solution coincides with the discrete flow at each time step over a long time depending on a non resonance condition satisfied by the stepsize. We introduce a class of modified splitting schemes fulfilling this condition at a high order and prove for them that the numerical flow and the continuous flow remain close over exponentially long time with respect to the step size. For stan- dard splitting or implicit-explicit scheme, such a backward error analysis result holds true on a time depending on a cut-off condition in the high frequencies (CFL condition). This analysis is valid in the case where the linear operator has a discrete (bounded domain) or continuous (the whole space) spectrum

    An approximation scheme for semilinear parabolic PDEs with convex and coercive Hamiltonians

    Get PDF
    We propose an approximation scheme for a class of semilinear parabolic equations that are convex and coercive in their gradients. Such equations arise often in pricing and portfolio management in incomplete markets and, more broadly, are directly connected to the representation of solutions to backward stochastic differential equations. The proposed scheme is based on splitting the equation in two parts, the first corresponding to a linear parabolic equation and the second to a Hamilton-Jacobi equation. The solutions of these two equations are approximated using, respectively, the Feynman-Kac and the Hopf-Lax formulae. We establish the convergence of the scheme and determine the convergence rate, combining Krylov's shaking coefficients technique and Barles-Jakobsen's optimal switching approximation.Comment: 24 page

    Energy preserving model order reduction of the nonlinear Schr\"odinger equation

    Get PDF
    An energy preserving reduced order model is developed for two dimensional nonlinear Schr\"odinger equation (NLSE) with plane wave solutions and with an external potential. The NLSE is discretized in space by the symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting system of Hamiltonian ordinary differential equations are integrated in time by the energy preserving average vector field (AVF) method. The mass and energy preserving reduced order model (ROM) is constructed by proper orthogonal decomposition (POD) Galerkin projection. The nonlinearities are computed for the ROM efficiently by discrete empirical interpolation method (DEIM) and dynamic mode decomposition (DMD). Preservation of the semi-discrete energy and mass are shown for the full order model (FOM) and for the ROM which ensures the long term stability of the solutions. Numerical simulations illustrate the preservation of the energy and mass in the reduced order model for the two dimensional NLSE with and without the external potential. The POD-DMD makes a remarkable improvement in computational speed-up over the POD-DEIM. Both methods approximate accurately the FOM, whereas POD-DEIM is more accurate than the POD-DMD

    An operator splitting scheme for the fractional kinetic Fokker-Planck equation

    Get PDF
    In this paper, we develop an operator splitting scheme for the fractional kinetic Fokker-Planck equation (FKFPE). The scheme consists of two phases: a fractional diffusion phase and a kinetic transport phase. The first phase is solved exactly using the convolution operator while the second one is solved approximately using a variational scheme that minimizes an energy functional with respect to a certain Kantorovich optimal transport cost functional. We prove the convergence of the scheme to a weak solution to FKFPE. As a by-product of our analysis, we also establish a variational formulation for a kinetic transport equation that is relevant in the second phase. Finally, we discuss some extensions of our analysis to more complex systems

    Exponentially accurate Hamiltonian embeddings of symplectic A-stable Runge--Kutta methods for Hamiltonian semilinear evolution equations

    Get PDF
    We prove that a class of A-stable symplectic Runge--Kutta time semidiscretizations (including the Gauss--Legendre methods) applied to a class of semilinear Hamiltonian PDEs which are well-posed on spaces of analytic functions with analytic initial data can be embedded into a modified Hamiltonian flow up to an exponentially small error. As a consequence, such time-semidiscretizations conserve the modified Hamiltonian up to an exponentially small error. The modified Hamiltonian is O(hp)O(h^p)-close to the original energy where pp is the order of the method and hh the time step-size. Examples of such systems are the semilinear wave equation or the nonlinear Schr\"odinger equation with analytic nonlinearity and periodic boundary conditions. Standard Hamiltonian interpolation results do not apply here because of the occurrence of unbounded operators in the construction of the modified vector field. This loss of regularity in the construction can be taken care of by projecting the PDE to a subspace where the operators occurring in the evolution equation are bounded and by coupling the number of excited modes as well as the number of terms in the expansion of the modified vector field with the step size. This way we obtain exponential estimates of the form O(exp(c/h1/(1+q)))O(\exp(-c/h^{1/(1+q)})) with c>0c>0 and q0q \geq 0; for the semilinear wave equation, q=1q=1, and for the nonlinear Schr\"odinger equation, q=2q=2. We give an example which shows that analyticity of the initial data is necessary to obtain exponential estimates
    corecore