1,264 research outputs found

    Superfrustration of charge degrees of freedom

    Get PDF
    We review recent results, obtained with P. Fendley, on frustration of quantum charges in lattice models for itinerant fermions with strong repulsive interactions. A judicious tuning of kinetic and interaction terms leads to models possessing supersymmetry. In such models frustration takes the form of what we call superfrustration: an extensive degeneracy of supersymmetric ground states. We present a gallery of examples of superfrustration on a variety of 2D lattices.Comment: 8 pages, 5 figures, contribution to the proceedings of the XXIII IUPAP International Conference on Statistical Physics (2007) in Genova, Ital

    First-Order System Least Squares and the Energetic Variational Approach for Two-Phase Flow

    Full text link
    This paper develops a first-order system least-squares (FOSLS) formulation for equations of two-phase flow. The main goal is to show that this discretization, along with numerical techniques such as nested iteration, algebraic multigrid, and adaptive local refinement, can be used to solve these types of complex fluid flow problems. In addition, from an energetic variational approach, it can be shown that an important quantity to preserve in a given simulation is the energy law. We discuss the energy law and inherent structure for two-phase flow using the Allen-Cahn interface model and indicate how it is related to other complex fluid models, such as magnetohydrodynamics. Finally, we show that, using the FOSLS framework, one can still satisfy the appropriate energy law globally while using well-known numerical techniques.Comment: 22 pages, 8 figures submitted to Journal of Computational Physic

    Stability of general-relativistic accretion disks

    Full text link
    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core-collapse of massive stars. We explore the stability of such disks against runaway and non-axisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the THOR code. We model the disk matter using the ideal fluid approximation with a Γ\Gamma-law equation of state with Γ=4/3\Gamma=4/3. We explore three disk models around non-rotating black holes with disk-to-black hole mass ratios of 0.24, 0.17 and 0.11. Due to metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable non-axisymmetric modes on a dynamical timescale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the non-axisymmetric mode with azimuthal number m = 1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m = 1 mode in some cases. Overall, our simulations show that the properties of the unstable non-axisymmetric modes in our disk models are qualitatively similar to those in Newtonian theory.Comment: 30 pages, 21 figure
    • …
    corecore