506 research outputs found

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    Complexity of Problems of Commutative Grammars

    Full text link
    We consider commutative regular and context-free grammars, or, in other words, Parikh images of regular and context-free languages. By using linear algebra and a branching analog of the classic Euler theorem, we show that, under an assumption that the terminal alphabet is fixed, the membership problem for regular grammars (given v in binary and a regular commutative grammar G, does G generate v?) is P, and that the equivalence problem for context free grammars (do G_1 and G_2 generate the same language?) is in Π2P\mathrm{\Pi_2^P}

    On 2-form gauge models of topological phases

    Get PDF
    We explore various aspects of 2-form topological gauge theories in (3+1)d. These theories can be constructed as sigma models with target space the second classifying space B2GB^2G of the symmetry group GG, and they are classified by cohomology classes of B2GB^2G. Discrete topological gauge theories can typically be embedded into continuous quantum field theories. In the 2-form case, the continuous theory is shown to be a strict 2-group gauge theory. This embedding is studied by carefully constructing the space of qq-form connections using the technology of Deligne-Beilinson cohomology. The same techniques can then be used to study more general models built from Postnikov towers. For finite symmetry groups, 2-form topological theories have a natural lattice interpretation, which we use to construct a lattice Hamiltonian model in (3+1)d that is exactly solvable. This construction relies on the introduction of a cohomology, dubbed 2-form cohomology, of algebraic cocycles that are identified with the simplicial cocycles of B2GB^2G as provided by the so-called WW-construction of Eilenberg-MacLane spaces. We show algebraically and geometrically how a 2-form 4-cocycle reduces to the associator and the braiding isomorphisms of a premodular category of GG-graded vector spaces. This is used to show the correspondence between our 2-form gauge model and the Walker-Wang model.Comment: 78 page

    Master index of volumes 161–170

    Get PDF

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    Fault-tolerant Hamiltonian laceability of Cayley graphs generated by transposition trees

    Get PDF
    AbstractA bipartite graph is Hamiltonian laceable if there exists a Hamiltonian path joining every pair of vertices that are in different parts of the graph. It is well known that Cay(Sn,B) is Hamiltonian laceable, where Sn is the symmetric group on {1,2,…,n} and B is a generating set consisting of transpositions of Sn. In this paper, we show that for any F⊆E(Cay(Sn,B)), if |F|≤n−3 and n≥4, then there exists a Hamiltonian path in Cay(Sn,B)−F joining every pair of vertices that are in different parts of the graph. The result is optimal with respect to the number of edge faults

    Local stabilizer codes in three dimensions without string logical operators

    Get PDF
    We suggest concrete models for self-correcting quantum memory by reporting examples of local stabilizer codes in 3D that have no string logical operators. Previously known local stabilizer codes in 3D all have string-like logical operators, which make the codes non-self-correcting. We introduce a notion of "logical string segments" to avoid difficulties in defining one dimensional objects in discrete lattices. We prove that every string-like logical operator of our code can be deformed to a disjoint union of short segments, and each segment is in the stabilizer group. The code has surface-like logical operators whose partial implementation has unsatisfied stabilizers along its boundary.Comment: 18 pages, 12 figures; clarified intermidiate steps in the proo
    • …
    corecore