1,660 research outputs found

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Resolution of the Oberwolfach problem

    Get PDF
    The Oberwolfach problem, posed by Ringel in 1967, asks for a decomposition of K2n+1K_{2n+1} into edge-disjoint copies of a given 22-factor. We show that this can be achieved for all large nn. We actually prove a significantly more general result, which allows for decompositions into more general types of factors. In particular, this also resolves the Hamilton-Waterloo problem for large nn.Comment: 28 page

    Long path and cycle decompositions of even hypercubes

    Get PDF
    We consider edge decompositions of the nn-dimensional hypercube QnQ_n into isomorphic copies of a given graph HH. While a number of results are known about decomposing QnQ_n into graphs from various classes, the simplest cases of paths and cycles of a given length are far from being understood. A conjecture of Erde asserts that if nn is even, â„“<2n\ell < 2^n and â„“\ell divides the number of edges of QnQ_n, then the path of length â„“\ell decomposes QnQ_n. Tapadia et al.\ proved that any path of length 2mn2^mn, where 2m<n2^m<n, satisfying these conditions decomposes QnQ_n. Here, we make progress toward resolving Erde's conjecture by showing that cycles of certain lengths up to 2n+1/n2^{n+1}/n decompose QnQ_n. As a consequence, we show that QnQ_n can be decomposed into copies of any path of length at most 2n/n2^{n}/n dividing the number of edges of QnQ_n, thereby settling Erde's conjecture up to a linear factor
    • …
    corecore