40 research outputs found

    Combinatorics

    Get PDF
    Combinatorics is a fundamental mathematical discipline which focuses on the study of discrete objects and their properties. The current workshop brought together researchers from diverse fields such as Extremal and Probabilistic Combinatorics, Discrete Geometry, Graph theory, Combiantorial Optimization and Algebraic Combinatorics for a fruitful interaction. New results, methods and developments and future challenges were discussed. This is a report on the meeting containing abstracts of the presentations and a summary of the problem session

    EUROCOMB 21 Book of extended abstracts

    Get PDF

    Number Theory, Analysis and Geometry: In Memory of Serge Lang

    Get PDF
    Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang’s vast contribution to mathematics, this memorial volume contains articles by prominent mathematicians in a variety of areas, namely number theory, analysis and geometry, representing Lang’s own breadth of interests. A special introduction by John Tate includes a brief and engaging account of Serge Lang’s life

    Discrete Quantum Walks on Graphs and Digraphs

    Get PDF
    This thesis studies various models of discrete quantum walks on graphs and digraphs via a spectral approach. A discrete quantum walk on a digraph XX is determined by a unitary matrix UU, which acts on complex functions of the arcs of XX. Generally speaking, UU is a product of two sparse unitary matrices, based on two direct-sum decompositions of the state space. Our goal is to relate properties of the walk to properties of XX, given some of these decompositions. We start by exploring two models that involve coin operators, one due to Kendon, and the other due to Aharonov, Ambainis, Kempe, and Vazirani. While UU is not defined as a function in the adjacency matrix of the graph XX, we find exact spectral correspondence between UU and XX. This leads to characterization of rare phenomena, such as perfect state transfer and uniform average vertex mixing, in terms of the eigenvalues and eigenvectors of XX. We also construct infinite families of graphs and digraphs that admit the aforementioned phenomena. The second part of this thesis analyzes abstract quantum walks, with no extra assumption on UU. We show that knowing the spectral decomposition of UU leads to better understanding of the time-averaged limit of the probability distribution. In particular, we derive three upper bounds on the mixing time, and characterize different forms of uniform limiting distribution, using the spectral information of UU. Finally, we construct a new model of discrete quantum walks from orientable embeddings of graphs. We show that the behavior of this walk largely depends on the vertex-face incidence structure. Circular embeddings of regular graphs for which UU has few eigenvalues are characterized. For instance, if UU has exactly three eigenvalues, then the vertex-face incidence structure is a symmetric 22-design, and UU is the exponential of a scalar multiple of the skew-symmetric adjacency matrix of an oriented graph. We prove that, for every regular embedding of a complete graph, UU is the transition matrix of a continuous quantum walk on an oriented graph

    Number Theory, Analysis and Geometry: In Memory of Serge Lang

    Get PDF
    Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang’s vast contribution to mathematics, this memorial volume contains articles by prominent mathematicians in a variety of areas, namely number theory, analysis and geometry, representing Lang’s own breadth of interests. A special introduction by John Tate includes a brief and engaging account of Serge Lang’s life

    Counting Problems on Quantum Graphs: Parameterized and Exact Complexity Classifications

    Get PDF
    Quantum graphs, as defined by Lovász in the late 60s, are formal linear combinations of simple graphs with finite support. They allow for the complexity analysis of the problem of computing finite linear combinations of homomorphism counts, the latter of which constitute the foundation of the structural hardness theory for parameterized counting problems: The framework of parameterized counting complexity was introduced by Flum and Grohe, and McCartin in 2002 and forms a hybrid between the classical field of computational counting as founded by Valiant in the late 70s and the paradigm of parameterized complexity theory due to Downey and Fellows which originated in the early 90s. The problem of computing homomorphism numbers of quantum graphs subsumes general motif counting problems and the complexity theoretic implications have only turned out recently in a breakthrough regarding the parameterized subgraph counting problem by Curticapean, Dell and Marx in 2017. We study the problems of counting partially injective and edge-injective homomorphisms, counting induced subgraphs, as well as counting answers to existential first-order queries. We establish novel combinatorial, algebraic and even topological properties of quantum graphs that allow us to provide exhaustive parameterized and exact complexity classifications, including necessary, sufficient and mostly explicit tractability criteria, for all of the previous problems.Diese Arbeit befasst sich mit der Komplexit atsanalyse von mathematischen Problemen die als Linearkombinationen von Graphhomomorphismenzahlen darstellbar sind. Dazu wird sich sogenannter Quantengraphen bedient, bei denen es sich um formale Linearkombinationen von Graphen handelt und welche von Lov asz Ende der 60er eingef uhrt wurden. Die Bestimmung der Komplexit at solcher Probleme erfolgt unter dem von Flum, Grohe und McCartin im Jahre 2002 vorgestellten Paradigma der parametrisierten Z ahlkomplexit atstheorie, die als Hybrid der von Valiant Ende der 70er begr undeten klassischen Z ahlkomplexit atstheorie und der von Downey und Fellows Anfang der 90er eingef uhrten parametrisierten Analyse zu verstehen ist. Die Berechnung von Homomorphismenzahlen zwischen Quantengraphen und Graphen subsumiert im weitesten Sinne all jene Probleme, die das Z ahlen von kleinen Mustern in gro en Strukturen erfordern. Aufbauend auf dem daraus resultierenden Durchbruch von Curticapean, Dell und Marx, das Subgraphz ahlproblem betre end, behandelt diese Arbeit die Analyse der Probleme des Z ahlens von partiell- und kanteninjektiven Homomorphismen, induzierten Subgraphen, und Tre ern von relationalen Datenbankabfragen die sich als existentielle Formeln ausdr ucken lassen. Insbesondere werden dabei neue kombinatorische, algebraische und topologische Eigenschaften von Quantengraphen etabliert, die hinreichende, notwendige und meist explizite Kriterien f ur die Existenz e zienter Algorithmen liefern

    A Pythagorean Introduction to Number Theory : Right Triangles, Sums of Squares, and Arithmetic

    Get PDF
    In the ?rst section of this opening chapter we review two different proofs of the PythagoreanTheorem,oneduetoEuclidandtheotheroneduetoaformerpresident oftheUnitedStates,JamesGar?eld.Inthesamesectionwealsoreviewsomehigher dimensional analogues of the Pythagorean Theorem. Later in the chapter we de?ne Pythagorean triples; explain what it means for a Pythagorean triple to be primitive; and clarify the relationship between Pythagorean triples and points with rational coordinates on the unit circle. At the end we list the problems that we will be interested in studying in the book. In the notes at the end of the chapter we talk about Pythagoreans and their, sometimes strange, beliefs. We will also brie?y review the history of Pythagorean triples

    Advances in Discrete Differential Geometry

    Get PDF
    Differential Geometr
    corecore