12 research outputs found

    Geometric Dilation and Halving Distance

    Get PDF
    Let us consider the network of streets of a city represented by a geometric graph G in the plane. The vertices of G represent the crossroads and the edges represent the streets. The latter do not have to be straight line segments, they may be curved. If one wants to drive from a place p to some other place q, normally the length of the shortest path along streets, d_G(p,q), is bigger than the airline distance (Euclidean distance) |pq|. The (relative) DETOUR is defined as delta_G(p,q) := d_G(p,q)/|pq|. The supremum of all these ratios is called the GEOMETRIC DILATION of G. It measures the quality of the network. A small dilation value guarantees that there is no bigger detour between any two points. Given a finite point set S, we would like to know the smallest possible dilation of any graph that contains the given points on its edges. We call this infimum the DILATION of S and denote it by delta(S). The main results of this thesis are - a general upper bound to the dilation of any finite point set S, delta(S) - a lower bound for a specific set P, delta(P)>(1+10^(-11))pi/2, which approximately equals 1.571 In order to achieve these results, we first consider closed curves. Their dilation depends on the HALVING PAIRS, pairs of points which divide the closed curve in two parts of equal length. In particular the distance between the two points is essential, the HALVING DISTANCE. A transformation technique based on halving pairs, the HALVING PAIR TRANSFORMATION, and the curve formed by the midpoints of the halving pairs, the MIDPOINT CURVE, help us to derive lower bounds to dilation. For constructing graphs of small dilation, we use ZINDLER CURVES. These are closed curves of constant halving distance. To give a structured overview, the mathematical apparatus for deriving the main results of this thesis includes - upper bound: * the construction of certain Zindler curves to generate a periodic graph of small dilation * an embedding argument based on a number theoretical result by Dirichlet - lower bound: * the formulation and analysis of the halving pair transformation * a stability result for the dilation of closed curves based on this transformation and the midpoint curve * the application of a disk-packing result In addition, this thesis contains - a detailed analysis of the dilation of closed curves - a collection of inequalities, which relate halving distance to other important quantities from convex geometry, and their proofs; including four new inequalities - the rediscovery of Zindler curves and a compact presentation of their properties - a proof of the applied disk packing result.Geometrische Dilation und Halbierungsabstand Man kann das von den Straßen einer Stadt gebildete Netzwerk durch einen geometrischen Graphen in der Ebene darstellen. Die Knoten dieses Graphen repräsentieren die Kreuzungen und die Kanten sind die Straßen. Letztere müssen nicht geradlinig sein, sondern können beliebig gekrümmt sein. Wenn man nun von einem Ort p zu einem anderen Ort q fahren möchte, dann ist normalerweise die Länge des kürzesten Pfades über Straßen, d_G(p,q), länger als der Luftlinienabstand (euklidischer Abstand) |pq|. Der (relative) UMWEG (DETOUR) ist definiert als delta_G(p,q) := d_G(p,q)/|pq|. Das Supremum all dieser Brüche wird GEOMETRISCHE DILATION (GEOMETRIC DILATION) von G genannt. Es ist ein Maß für die Qualität des Straßennetzes. Ein kleiner Dilationswert garantiert, dass es keinen größeren Umweg zwischen beliebigen zwei Punkten gibt. Für eine gegebene endliche Punktmenge S würden wir nun gerne bestimmen, was der kleinste Dilationswert ist, den wir mit einem Graphen erreichen können, der die gegebenen Punkte auf seinen Kanten enthält. Dieses Infimum nennen wir die DILATION von S und schreiben kurz delta(S). Die Haupt-Ergebnisse dieser Arbeit sind - eine allgemeine obere Schranke für die Dilation jeder beliebigen endlichen Punktmenge S: delta(S) - eine untere Schranke für eine bestimmte Menge P: delta(P)>(1+10^(-11))pi/2, was ungefähr der Zahl 1.571 entspricht Um diese Ergebnisse zu erreichen, betrachten wir zunächst geschlossene Kurven. Ihre Dilation hängt von sogenannten HALBIERUNGSPAAREN (HALVING PAIRS) ab. Das sind Punktpaare, die die geschlossene Kurve in zwei Teile gleicher Länge teilen. Besonders der Abstand der beiden Punkte ist von Bedeutung, der HALBIERUNGSABSTAND (HALVING DISTANCE). Eine auf den Halbierungspaaren aufbauende Transformation, die HALBIERUNGSPAARTRANSFORMATION (HALVING PAIR TRANSFORMATION), und die von den Mittelpunkten der Halbierungspaare gebildete Kurve, die MITTELPUNKTKURVE (MIDPOINT CURVE), helfen uns untere Dilationsschranken herzuleiten. Zur Konstruktion von Graphen mit kleiner Dilation benutzen wir ZINDLERKURVEN (ZINDLER CURVES). Dies sind geschlossene Kurven mit konstantem Halbierungspaarabstand. Die mathematischen Hilfsmittel, mit deren Hilfe wir schließlich die Hauptresultate beweisen, sind unter anderem - obere Schranke: * die Konstruktion von bestimmten Zindlerkurven, mit denen periodische Graphen kleiner Dilation gebildet werden können * ein Einbettungsargument, das einen zahlentheoretischen Satz von Dirichlet benutzt - untere Schranke: * die Definition und Analyse der Halbierungspaartransformation * ein Stabilitätsresultat für die Dilation geschlossener Kurven, das auf dieser Transformation und der Mittelpunktkurve basiert * die Anwendung eines Kreispackungssatzes Zusätzlich enthält diese Dissertation - eine detaillierte Analyse der Dilation geschlossener Kurven - eine Sammlung von Ungleichungen, die den Halbierungsabstand zu anderen wichtigen Größen der Konvexgeometrie in Beziehung setzen, und ihre Beweise; inklusive vier neuer Ungleichungen - die Wiederentdeckung von Zindlerkurven und eine kompakte Darstellung ihrer Eigenschaften - einen Beweis des angewendeten Kreispackungssatzes

    Subject Index Volumes 1–200

    Get PDF

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Spatial Economics: Density, Potential, and Flow

    Get PDF
    Location theory has traditionally considered space as a two-dimensional Euclidean continuum. It has resorted to geometric constructions and emphasized geometric and geographic intuition. More recently, the emergence of linear and mathematical programming methods in regional analysis has favored an abstract indexing of locations. The matrix of spatial relationships has become the matrix of point-pairs. But the intuitive notions of two-dimensional space have been lost in the process. The purpose of this book is to reintroduce the two-dimensional continuum as the natural spatial setting of economic activities and to exploit the idea for all its worth. Economic interaction between agents are viewed as flows, of commodities or persons. These flows are generated by production and consumption activities, which represent the sources and sinks of a flow field. The direction of flow is oriented by principles of cost minimization and/or of profit or utility maximization. In this way neoclassical economics is wedded to the hydrodynamics of flow fields

    Introduction to Real Analysis

    Get PDF
    Using a clear and informal approach, this book introduces readers to a rigorous understanding of mathematical analysis and presents challenging math concepts as clearly as possible. This book is intended for those who want to gain an understanding of mathematical analysis and challenging mathematical concepts.https://digitalcommons.trinity.edu/mono/1006/thumbnail.jp

    Subject index volumes 1–92

    Get PDF

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF

    Foundations of Mechanics, Second Edition

    Get PDF
    Preface to the Second Edition. Since the first edition of this book appeared in 1967, there has been a great deal of activity in the field of symplectic geometry and Hamiltonian systems. In addition to the recent textbooks of Arnold, Arnold-Avez, Godbillon, Guillemin-Sternberg, Siegel-Moser, and Souriau, there have been many research articles published. Two good collections are "Symposia Mathematica," vol. XIV, and "Géométrie Symplectique el Physique Mathématique," CNRS, Colloque Internationaux, no. 237. There are also important survey articles, such as Weinstein [1977b]. The text and bibliography contain many of the important new references we are aware of. We have continued to find the classic works, especially Whittaker [1959], invaluable. The basic audience for the book remains the same: mathematicians, physicists, and engineers interested in geometrical methods in mechanics, assuming a background in calculus, linear algebra, some classical analysis, and point set topology. We include most of the basic results in manifold theory, as well as some key facts from point set topology and Lie group theory. Other things used without proof are clearly noted. We have updated the material on symmetry groups and qualitative theory, added new sections on the rigid body, topology and mechanics, and quantization, and other topics, and have made numerous corrections and additions. In fact, some of the results in this edition are new. We have made two major changes in notation: we now use f^* for pull-back (the first edition used f[sub]*), in accordance with standard usage, and have adopted the "Bourbaki" convention for wedge product. The latter eliminates many annoying factors of 2. A. N. Kolmogorov's address at the 1954 International Congress of Mathematicians marked an important historical point in the development of the theory, and is reproduced as an appendix. The work of Kolmogorov, Arnold, and Moser and its application to Laplace's question of stability of the solar system remains one of the goals of the exposition. For complete details of all tbe theorems needed in this direction, outside references will have to be consulted, such as Siegel-Moser [1971] and Moser [1973a]. We are pleased to acknowledge valuable assistance from Paul Chernoff, Wlodek Tulczyjew, Morris Hirsh, Alan Weinstein, and our invaluable assistant authors, Richard Cushman and Tudor Ratiu, who all contributed some of their original material for incorporation into the text. Also, we are grateful to Ethan Akin, Kentaro Mikami, Judy Arms, Harold Naparst, Michael Buchner, Ed Nelson, Robert Cahn, Sheldon Newhouse, Emil Chorosoff, George Oster, André Deprit, Jean-Paul Penot, Bob Devaney, Joel Robbin, Hans Duistermaat, Clark Robinson, John Guckenheimer, David Rod, Martin Gutzwiller, William Satzer, Richard Hansen, Dieter Schmidt, Morris Kirsch, Mike Shub, Michael Hoffman, Steve Smale, Andrei Iacob, Rich Spencer, Robert Jantzen, Mike Spivak, Therese Langer, Dan Sunday, Ken Meyer, Floris Takens, [and] Randy Wohl for contributions, remarks, and corrections which we have included in this edition. Further, we express our gratitude to Chris Shaw, who made exceptional efforts to transfom our sketches into the graphics which illustrate the text, to Peter Coha for his assistance in organizing the Museum and Bibliography, and to Ruthie Cephas, Jody Hilbun, Marnie McElhiney, Ruth (Bionic Fingers) Suzuki, and Ikuko Workman for their superb typing job. Theoretical mechanics is an ever-expanding subject. We will appreciate comments from readers regarding new results and shortcomings in this edition. RALPH ABRAHAM, JERROLD E. MARSDEN</p

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore