1,796 research outputs found

    Quantum Random Self-Modifiable Computation

    Full text link
    Among the fundamental questions in computer science, at least two have a deep impact on mathematics. What can computation compute? How many steps does a computation require to solve an instance of the 3-SAT problem? Our work addresses the first question, by introducing a new model called the ex-machine. The ex-machine executes Turing machine instructions and two special types of instructions. Quantum random instructions are physically realizable with a quantum random number generator. Meta instructions can add new states and add new instructions to the ex-machine. A countable set of ex-machines is constructed, each with a finite number of states and instructions; each ex-machine can compute a Turing incomputable language, whenever the quantum randomness measurements behave like unbiased Bernoulli trials. In 1936, Alan Turing posed the halting problem for Turing machines and proved that this problem is unsolvable for Turing machines. Consider an enumeration E_a(i) = (M_i, T_i) of all Turing machines M_i and initial tapes T_i. Does there exist an ex-machine X that has at least one evolutionary path X --> X_1 --> X_2 --> . . . --> X_m, so at the mth stage ex-machine X_m can correctly determine for 0 <= i <= m whether M_i's execution on tape T_i eventually halts? We demonstrate an ex-machine Q(x) that has one such evolutionary path. The existence of this evolutionary path suggests that David Hilbert was not misguided to propose in 1900 that mathematicians search for finite processes to help construct mathematical proofs. Our refinement is that we cannot use a fixed computer program that behaves according to a fixed set of mechanical rules. We must pursue methods that exploit randomness and self-modification so that the complexity of the program can increase as it computes.Comment: 50 pages, 3 figure

    A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory

    Get PDF
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section I. Many modifications of Turing machines cum quantum ones are researched in Section II for the Halting problem and completeness, and the model of two independent Turing machines seems to generalize them. Then, that pair can be postulated as the formal definition of reality therefore being complete unlike any of them standalone, remaining incomplete without its complementary counterpart. Representation is formal defined as a one-to-one mapping between the two Turing machines, and the set of all those mappings can be considered as “language” therefore including metaphors as mappings different than representation. Section III investigates that formal relation of “reality”, “representation”, and “language” modeled by (at least two) Turing machines. The independence of (two) Turing machines is interpreted by means of game theory and especially of the Nash equilibrium in Section IV. Choice and information as the quantity of choices are involved. That approach seems to be equivalent to that based on set theory and the concept of actual infinity in mathematics and allowing of practical implementations

    Zeno machines and hypercomputation

    Get PDF
    This paper reviews the Church-Turing Thesis (or rather, theses) with reference to their origin and application and considers some models of "hypercomputation", concentrating on perhaps the most straight-forward option: Zeno machines (Turing machines with accelerating clock). The halting problem is briefly discussed in a general context and the suggestion that it is an inevitable companion of any reasonable computational model is emphasised. It is hinted that claims to have "broken the Turing barrier" could be toned down and that the important and well-founded role of Turing computability in the mathematical sciences stands unchallenged.Comment: 11 pages. First submitted in December 2004, substantially revised in July and in November 2005. To appear in Theoretical Computer Scienc

    Strongly Universal Quantum Turing Machines and Invariance of Kolmogorov Complexity

    Get PDF
    We show that there exists a universal quantum Turing machine (UQTM) that can simulate every other QTM until the other QTM has halted and then halt itself with probability one. This extends work by Bernstein and Vazirani who have shown that there is a UQTM that can simulate every other QTM for an arbitrary, but preassigned number of time steps. As a corollary to this result, we give a rigorous proof that quantum Kolmogorov complexity as defined by Berthiaume et al. is invariant, i.e. depends on the choice of the UQTM only up to an additive constant. Our proof is based on a new mathematical framework for QTMs, including a thorough analysis of their halting behaviour. We introduce the notion of mutually orthogonal halting spaces and show that the information encoded in an input qubit string can always be effectively decomposed into a classical and a quantum part.Comment: 18 pages, 1 figure. The operation R is now really a quantum operation (it was not before); corrected some typos, III.B more readable, Conjecture 3.15 is now a theore
    • …
    corecore