608 research outputs found

    Edit Distance for Pushdown Automata

    Get PDF
    The edit distance between two words w1,w2w_1, w_2 is the minimal number of word operations (letter insertions, deletions, and substitutions) necessary to transform w1w_1 to w2w_2. The edit distance generalizes to languages L1,L2\mathcal{L}_1, \mathcal{L}_2, where the edit distance from L1\mathcal{L}_1 to L2\mathcal{L}_2 is the minimal number kk such that for every word from L1\mathcal{L}_1 there exists a word in L2\mathcal{L}_2 with edit distance at most kk. We study the edit distance computation problem between pushdown automata and their subclasses. The problem of computing edit distance to a pushdown automaton is undecidable, and in practice, the interesting question is to compute the edit distance from a pushdown automaton (the implementation, a standard model for programs with recursion) to a regular language (the specification). In this work, we present a complete picture of decidability and complexity for the following problems: (1)~deciding whether, for a given threshold kk, the edit distance from a pushdown automaton to a finite automaton is at most kk, and (2)~deciding whether the edit distance from a pushdown automaton to a finite automaton is finite.Comment: An extended version of a paper accepted to ICALP 2015 with the same title. The paper has been accepted to the LMCS journa

    Model Checking Synchronized Products of Infinite Transition Systems

    Full text link
    Formal verification using the model checking paradigm has to deal with two aspects: The system models are structured, often as products of components, and the specification logic has to be expressive enough to allow the formalization of reachability properties. The present paper is a study on what can be achieved for infinite transition systems under these premises. As models we consider products of infinite transition systems with different synchronization constraints. We introduce finitely synchronized transition systems, i.e. product systems which contain only finitely many (parameterized) synchronized transitions, and show that the decidability of FO(R), first-order logic extended by reachability predicates, of the product system can be reduced to the decidability of FO(R) of the components. This result is optimal in the following sense: (1) If we allow semifinite synchronization, i.e. just in one component infinitely many transitions are synchronized, the FO(R)-theory of the product system is in general undecidable. (2) We cannot extend the expressive power of the logic under consideration. Already a weak extension of first-order logic with transitive closure, where we restrict the transitive closure operators to arity one and nesting depth two, is undecidable for an asynchronous (and hence finitely synchronized) product, namely for the infinite grid.Comment: 18 page
    • …
    corecore