103 research outputs found

    Taming Reversible Halftoning via Predictive Luminance

    Full text link
    Traditional halftoning usually drops colors when dithering images with binary dots, which makes it difficult to recover the original color information. We proposed a novel halftoning technique that converts a color image into a binary halftone with full restorability to its original version. Our novel base halftoning technique consists of two convolutional neural networks (CNNs) to produce the reversible halftone patterns, and a noise incentive block (NIB) to mitigate the flatness degradation issue of CNNs. Furthermore, to tackle the conflicts between the blue-noise quality and restoration accuracy in our novel base method, we proposed a predictor-embedded approach to offload predictable information from the network, which in our case is the luminance information resembling from the halftone pattern. Such an approach allows the network to gain more flexibility to produce halftones with better blue-noise quality without compromising the restoration quality. Detailed studies on the multiple-stage training method and loss weightings have been conducted. We have compared our predictor-embedded method and our novel method regarding spectrum analysis on halftone, halftone accuracy, restoration accuracy, and the data embedding studies. Our entropy evaluation evidences our halftone contains less encoding information than our novel base method. The experiments show our predictor-embedded method gains more flexibility to improve the blue-noise quality of halftones and maintains a comparable restoration quality with a higher tolerance for disturbances.Comment: to be published in IEEE Transactions on Visualization and Computer Graphic

    Simulation of an electrophotographic halftone reproduction

    Get PDF
    The robustness of three digital halftoning techniques are simulated for a hypothetical electrophotographic laser printer subjected to dynamic environmental conditions over a copy run of one thousand images. Mathematical electrophotographic models have primarily concentrated on solid area reproductions under time-invariant conditions. The models used in this study predict the behavior of complex image distributions at various stages in the electrophotographic process. The system model is divided into seven subsystems: Halftoning, Laser Exposure, Photoconductor Discharge, Toner Development, Transfer, Fusing, and Image Display. Spread functions associated with laser spot intensity, charge migration, and toner transfer and fusing are used to predict the electrophotographic system response for continuous and halftone reproduction. Many digital halftoning techniques have been developed for converting from continuous-tone to binary (halftone) images. The general objective of halftoning is to approximate the intermediate gray levels of continuous tone images with a binary (black-and-white) imaging system. Three major halftoning techniques currently used are Ordered-Dither, Cluster-Dot, and Error Diffusion. These halftoning algorithms are included in the simulation model. Simulation in electrophotography can be used to better understand the relationship between electrophotographic parameters and image quality, and to observe the effects of time-variant degradation on electrophotographic parameters and materials. Simulation programs, written in FORTRAN and SLAM (Simulation Language Alternative Modeling), have been developed to investigate the effects of system degradation on halftone image quality. The programs have been designed for continuous simulation to characterize the behavior or condition of the electrophotographic system. The simulation language provides the necessary algorithms for obtaining values for the variables described by the time-variant equations, maintaining a history of values during the simulation run, and reporting statistical information on time-dependent variables. Electrophotographic variables associated with laser intensity, initial photoconductor surface voltage, and residual voltage are degraded over a simulated run of one thousand copies. These results are employed to predict the degraded electrophotographic system response and to investigate the behavior of the various halftone techniques under dynamic system conditions. Two techniques have been applied to characterize halftone image quality: Tone Reproduction Curves are used to characterize and record the tone reproduction capability of an electrophotographic system over a simulated copy run. Density measurements are collected and statistical inferences drawn using SLAM. Typically the sharpness of an image is characterized by a system modulation transfer function (MTF). The mathematical models used to describe the subsystem transforms of an electrophotographic system involve non-linear functions. One means for predicting this non-linear system response is to use a Chirp function as the input to the model and then to compare the reproduced modulation to that of the original. Since the imaging system is non-linear, the system response cannot be described by an MTF, but rather an Input Response Function. This function was used to characterize the robustness of halftone patterns at various frequencies. Simulated images were also generated throughout the simulation run and used to evaluate image sharpness and resolution. The data, generated from each of the electrophotographic simulation models, clearly indicates that image stability and image sharpness is not influenced by dot orientation, but rather by the type of halftoning operation used. Error-Diffusion is significantly more variable than Clustered-Dot and Dispersed-Dot at low to mid densities. However, Error-Diffusion is significantly less variable than the ordered dither patterns at high densities. Also, images generated from Error-Diffusion are sharper than those generated using Clustered-Dot and Dispersed-Dot techniques, but the resolution capability of each of the techniques remained the same and degraded equally for each simulation run

    Improved methods and system for watermarking halftone images

    Get PDF
    Watermarking is becoming increasingly important for content control and authentication. Watermarking seamlessly embeds data in media that provide additional information about that media. Unfortunately, watermarking schemes that have been developed for continuous tone images cannot be directly applied to halftone images. Many of the existing watermarking methods require characteristics that are implicit in continuous tone images, but are absent from halftone images. With this in mind, it seems reasonable to develop watermarking techniques specific to halftones that are equipped to work in the binary image domain. In this thesis, existing techniques for halftone watermarking are reviewed and improvements are developed to increase performance and overcome their limitations. Post-halftone watermarking methods work on existing halftones. Data Hiding Cell Parity (DHCP) embeds data in the parity domain instead of individual pixels. Data Hiding Mask Toggling (DHMT) works by encoding two bits in the 2x2 neighborhood of a pseudorandom location. Dispersed Pseudorandom Generator (DPRG), on the other hand, is a preprocessing step that takes place before image halftoning. DPRG disperses the watermark embedding locations to achieve better visual results. Using the Modified Peak Signal-to-Noise Ratio (MPSNR) metric, the proposed techniques outperform existing methods by up to 5-20%, depending on the image type and method considered. Field programmable gate arrays (FPGAs) are ideal for solutions that require the flexibility of software, while retaining the performance of hardware. Using VHDL, an FPGA based halftone watermarking engine was designed and implemented for the Xilinx Virtex XCV300. This system was designed for watermarking pre-existing halftones and halftones obtained from grayscale images. This design utilizes 99% of the available FPGA resources and runs at 33 MHz. Such a design could be applied to a scanner or printer at the hardware level without adversely affecting performance

    Digital halftoning using fibonacci-like sequence pertubation and using vision-models in different color spaces

    Get PDF
    A disadvantage in error diffusion is that it creates objectionable texture patterns at certain gray levels. An approach, threshold perturbation by Fibonacci-like sequences, was studied. This process is simpler than applying a vision model and it also decreases the visible patterns in error diffusion. Vector error diffusion guarantees minimum color distance in binarization provided that a uniform color space is used. Four color spaces were studied in this research. It was found that vector error diffusion in two linear color spaces made no reduction in the quality of halftoning compared with that in CIEL*a*b* or CIEL*u*v* color spaces. A luminance vision MTF and a chroma vision MTF were used in model-based error diffusion to further improve the halftone image quality

    New methods for digital halftoning and inverse halftoning

    Get PDF
    Halftoning is the rendition of continuous-tone pictures on bi-level displays. Here we first review some of the halftoning algorithms which have a direct bearing on our paper and then describe some of the more recent advances in the field. Dot diffusion halftoning has the advantage of pixel-level parallelism, unlike the popular error diffusion halftoning method. We first review the dot diffusion algorithm and describe a recent method to improve its image quality by taking advantage of the Human Visual System function. Then we discuss the inverse halftoning problem: The reconstruction of a continuous tone image from its halftone. We briefly review the methods for inverse halftoning, and discuss the advantages of a recent algorithm, namely, the Look Up Table (LUT)Method. This method is extremely fast and achieves image quality comparable to that of the best known methods. It can be applied to any halftoning scheme. We then introduce LUT based halftoning and tree-structured LUT (TLUT)halftoning. We demonstrate how halftone image quality in between that of error diffusion and Direct Binary Search (DBS)can be achieved depending on the size of tree structure in TLUT algorithm while keeping the complexity of the algorithm much lower than that of DBS

    Novel methods in image halftoning

    Get PDF
    Ankara : Department of Electrical and Electronics Engineering and Institute of Engineering and Science, Bilkent Univ., 1998.Thesis (Master's) -- Bilkent University, 1998.Includes bibliographical references leaves 97-101Halftoning refers to the problem of rendering continuous-tone (contone) images on display and printing devices which are capable of reproducing only a limited number of colors. A new adaptive halftoning method using the adaptive QR- RLS algorithm is developed for error diffusion which is one of the halftoning techniques. Also, a diagonal scanning strategy to exploit the human visual system properties in processing the image is proposed. Simulation results on color images demonstrate the superior quality of the new method compared to the existing methods. Another problem studied in this thesis is inverse halftoning which is the problem of recovering a contone image from a given halftoned image. A novel inverse halftoning method is developed for restoring a contone image from the halftoned image. A set theoretic formulation is used where sets are defined using the prior information about the problem. A new space domain projection is introduced assuming the halftoning is performed ,with error diffusion, and the error diffusion filter kernel is known. The space domain, frequency domain, and space-scale domain projections are used alternately to obtain a feasible solution for the inverse halftoning problem which does not have a unique solution. Simulation results for both grayscale and color images give good results, and demonstrate the effectiveness of the proposed inverse halftoning method.Bozkurt, GözdeM.S

    A POCS-based restoration algorithm for restoring halftoned color-quantized images

    Get PDF
    Centre for Multimedia Signal Processing, Department of Electronic and Information Engineering2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Parallel Algorithm for Hardware Implementation of Inverse Halftoning

    Get PDF
    Abstract— A Parallel algorithm and its hardware implementation of Inverse Halftone operation is proposed in this paper. The algorithm is based on Lookup Tables from which the inverse halftone value of a pixel is directly determined using a pattern of pixels. A method has been developed that allows accessing more than one value from the lookup table at any time. The lookup table is divided into smaller lookup tables, such that each pattern selected at any time goes to a separate smaller lookup table. The 15-pixel parallel version of the algorithm was tested on sample images and a simple and effective method has been used to overcome quality degradation due to pixel loss in the proposed algorithm. It can provide at least 4 times decrease in lookup table size when compared with serial lookup table method implemented multiple times for same number of pixels
    corecore